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This paper re-examines the evaluation of intergenerational allocations in an

uncertain world. It axiomatically characterizes a class of criteria that avoid

serious drawbacks of expected discounted utilitarianism concerning the choice

of the discount factor and the insensitivity to ex-ante and ex-post distribu-

tional concerns. The distinctive feature of the proposed criteria is to assess

alternatives based on speci�c information about the evolution of technology,

the intensity and timing of resolution of risk, and the scarcity of resources.
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1. Introduction

1.1. Motivation

Human activities today impact the welfare of future generations. Some activities, as

investing in new technologies, are likely to improve future living conditions. Others,

as those inducing climate change, are likely to worsen them. To provide sensitive policy

recommendations, society needs to aggregate the con�icting interests of present and future

generations based on well-de�ned normative principles.

In economics, the most prominent welfare criterion to assess intergenerational risks is

expected discounted utilitarianism (EDU). Social welfare is the discounted and probability-

weighted sum of the well-being of each generation at each state of nature. Despite its

intuitive formulation, the EDU criterion presents two major weaknesses, which motivate

this study.

First, discounting discriminates against later generations. From an ethical viewpoint,

discounting is �a practice which is ethically indefensible and arises merely from the weak-

ness of the imagination� (Ramsey, 1928, p.543). From a practical viewpoint, however,

discounting can be justi�ed by the probability of extinction (Dasgupta and Heal, 1979;
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Stern, 2007).1 More importantly, discounting reduces the excessive moral obligations to

sacri�ce the welfare of earlier generations for the bene�t of better-o� later generations

(Zuber and Asheim, 2012). Yet, the choice of the �correct� discount factor remains elusive

and constitutes an unsolved moral dilemma for practitioners and policymakers.

Second, the EDU criterion is insensitive to permutations of generations' well-being

across time and states of nature.2 This property is directly inherited from its static coun-

terpart, expected utilitarianism, and has been largely discussed in relation to Harsanyi

(1955)'s characterization (Adler and Sanchirico (2006); Epstein and Segal (1992); Fleur-

baey (2010); Gajdos and Maurin (2004)). Contrary to EDU, in some situations society

might prefer giving equal chances to both individuals rather than assigning a prize to one

individual only, as advocated by Diamond (1967) and Epstein and Segal (1992). In other

situations, instead, society might prefer assigning a prize to both individuals with 50%

probability, rather than assigning the prize for sure, but randomizing on the recipient,

as advocated by Broome (1984) and Fleurbaey (2010). Unfortunately, while normatively

compelling, these concerns for �ex-ante egalitarianism� and �ex-post fairness� are mutually

inconsistent (see Fleurbaey (2010) and Fleurbaey and Zuber (2013)). It follows that EDU

continues to be the prevalent criterion in applications.3

In this paper, I explore an approach to intergenerational ethics that proves able to over-

come these weaknesses. The main innovation is to let some speci�c information guide

society in the evaluation of alternative distributions of resources. More precisely, infor-

mation related to the resource distribution problem�i.e. the evolution of technology, the

intensity and timing of resolution of risk, and the scarcity of resources�allow formulat-

ing more versatile principles of intergenerational justice. These principles do not alone

determine how society should discount the future or how to incorporate ex-ante and ex-

post concerns. Rather, these principles establish how society should use the information

available to determine the social ranking, including the social discount rate and the role

of ex-ante and ex-post concerns.

This explicit relationship between the ranking of allocations and the resource distribu-

tion problem is new to the literature on intergenerational risk. The standard approach

is to de�ne �universal� criteria. These criteria evaluate allocations independently of the

problem and are, thus, simple and analytically tractable. Yet, they seem unable to pro-

vide appealing policy recommendations for each problem, as discussed above for the EDU

1Dasgupta and Heal (1979, p. 262) clarify �that one might �nd it ethically reasonable to discount future
utilities at positive rates ... because there is a positive chance that future generations will not exist.�

2Formally, permuting the (discounted) well-being across time and (equally likely) states of nature leaves
social welfare unchanged. Crucially, this conclusion does not rest on what index of well-being is used to
evaluate the quality of life of a generation at a speci�c state of nature. The insensitivity to permutations
holds whether society uses each generation's cardinal utility or a (concave) transformation of it or a
direct evaluation of generation's assignment.

3Alternatives to EDU have been recently proposed in the literature. Adler and Treich (2014) propose
a prioritarian social welfare function, which aggregates concave transformations of each generation's
expected utility. Fleurbaey and Zuber (2015), instead, propose to �rst evaluate the welfare at each
state of nature through the �equally distributed equivalent� and than aggregate such indexes over
states of nature.
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criterion.4 A di�erent approach is to associate a subset of optimal allocations to each

problem, as in the fair allocation theory literature (see the recent survey by Thomson

(2011)). This approach is �exible and provides policy recommendations tailored to the

speci�c problems faced by society. The drawback is that �optimal� allocations are often

of little help in second best situations, where �ne-grained welfare criteria are more appro-

priate. In this paper, I integrate the two approaches. This hybrid approach combines the

simplicity and analytical tractability of �ne-grained welfare criteria with the �exibility of

choosing optimal allocations. It includes the �universal� criteria as a special case.5

The criterion characterized here can be seen as adding an endogenous equivalent scale to

EDU. The equivalent scale tells that the legitimate claim to consumption of each genera-

tion in each state should depend on what the cost for society is for providing consumption

in that speci�c time and state. To illustrate, consider a stylized three-period model. Be-

fore the second period, a small asteroid may hit Earth with probability π > 0 and, as

a result, the productivity of technology is drammatically reduced (without having any

direct e�ect on population). Standard EDU implicitly assumes that each generation in

each state deserves the same consumption level and�by concavity of u�it penalizes al-

locations that deviate from this strongly egalitarian ideal. Yet, since less is available for

consumption should the asteroid hit, this strongly egalitarian reference allocation is either

feasible and ine�cient or unfeasible. Furthermore, it does not capture how the resolution

of uncertainty impacts what consumption can be feasibly assigned to each generation at

each state. Most importantly, it disregards the correlation of feasible consumptions across

states and generations, crucial aspect of the ex-ante and ex-post ethical concerns.

The introduction of equivalent scales avoids these issues. Society penalizes allocations

that deviate from a weakly egalitarian and e�cient reference allocation. It is weakly

egalitarian as the reference assigns to each generation equally desirable consumption lot-

teries. Moreover, since it is e�cient, it re�ects the technology that is available in each

state and captures the correlations between feasible consumptions: Should the asteroid hit

Earth and reduce productivity, the second-period generation cannot legitimately claim the

same consumption as if the asteroid didn't hit. Of course, society should compensate the

second- and third-period generations for such a risk, but only sofar as these generations

are considered worse-o� than the �rst generation.

In the next section, I introduce a two-period model. This simple example allows me:

to illustrate the main equity principles; to present the class of reference-dependent utili-

tarian welfare criteria; and to compare these criteria with EDU. In Section 3, I formalize

the model and the axioms and derive the main results. Before this, I shortly place the

contribution within the literature.

4Di�culties for more general criteria under uncertainty have been recently addressed in Fleurbaey (2010),
Fleurbaey and Zuber (2013), Fudenberg and Levine (2012), Grant et al. (2012).

5For a similar approach dealing with the aggregation of individuals' preferences, see Fleurbaey and
Maniquet (2011) and, for the intergenerational setting, Fleurbaey and Zuber (2014).
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1.2. Related literature

The standard approach to the social evaluation of intergenerational risks is to rely on

Harsanyi (1955)'s characterization of expected utilitarianism, where individuals are rein-

terpreted as generations. Arguably, however, Harsanyi's setting is not the most appro-

priate to address long-term intergenerational risk. First, it is arbitrary to assume that

generations have preferences over their contingent consumptions as, by the time they will

be born, most of the risk might be resolved. Thus, the problem cannot be to aggregate gen-

erations' preferences, as these preferences do not exist to start with. Second, risk resolves

gradually over time and not in �one shot.� This implies that generations face di�erent

risks and cannot be treated anonymously with respect to the time they live in. Finally,

extinction is considered a fundamental justi�cation for intergenerational discounting, but

has no place in Harsanyi's framework. To address these issues, I adopt a model of gradual

resolution of risk similar to Kreps and Porteus (1978) with two main changes. First, I

allow for the possibility of extinction. Second, I assume that each generation t is born

after the risk at t is resolved: all risk is then entirely borne by society, as in Asheim and

Brekke (2002) and, more recently, Asheim and Zuber (2016).6

The analysis of individual preferences in the context of intertemporal models with grad-

ual resolution of risk includes Kreps and Porteus (1978), Epstein and Zin (1989), Weil

(1990), and Traeger (2012). As in Kreps and Porteus (1978), we highlight that the timing

of resolution of risk matters for the ranking of allocations. As in Epstein and Zin (1989)

and Weil (1990), we obtain (tractable) isolelastic functional forms. Traeger (2012) intro-

duces the concept of �intertemporal risk aversion� to model an individual that dislikes

lotteries with persistent outcomes; this requirement, however, may well capture individ-

ual's attitude towards risk and time, but it seems far less appealing for social preferences

as it directly violates the social concern for ex-post fairness.

A more fundamental di�erence emerges in terms of time consistency, i.e. the requirement

that the ranking of two allocations with a common �rst period assignment is unchanged

when this assignment is realized. The reference-dependent utilitarian criteria are time

inconsistent.7 This is the cost the proposed approach pays to address the above-mentioned

drawbacks of EDU. This is in line with recent studies of climate change issues, where

time inconsistent criteria are introduced to combine realistic short term interest rates

with enough attention to far future generations (see, among others, Karp (2005), Harstad

(2016), and Gerlagh and Liski (2017)). Moreover, time inconsistency is not in con�ict

with �rational� social preferences: when computing today's distributive policy, society

needs to be sophisticated and take into account how this policy will in�uence future

optimal policies (Pollak, 1968). Finally and more importantly, time inconsistency is shown

6Asheim and Zuber (2016) builds on recent advances in the utility-streams literature on intergenerational
justice, and in particular on the rank-discounted utilitarian criterion (Zuber and Asheim, 2012), and
studies how to rank social situations in which each potential individual is characterized by a utility
level and a probability of existence.

7Except for the degenerate case for which the criteria do not depend on the speci�c resource distribution
problem faced by society.
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to be unavoidable in the intergenerational setting�even without risk�as it is a direct

implication of basic principles of intergenerational equity (Asheim and Mitra, 2016).

Reference-dependent utilitarianism also draws a parallel with reference-dependent pref-

erences (see Koszegi and Rabin (2006) and Ok et al. (2015)). These preferences depend

not only on the assigned alternative, but also on the reference point adopted for the eval-

uation. In behavioral economic models, the reference is set to the status quo or to match

individual's expectations. In the present setting, the reference is given a normative justi-

�cation and is singled out as the unique allocation that is both e�cient and equitable, in

the sense of Asheim and Brekke (2002).

Finally, our approach is also related to Dhillon and Mertens (1999)'s alternative to

expected utilitarianism. Dhillon and Mertens suggest additively aggregating normalized

von Neumann-Morgenstern utility functions, where each individual's utility is set to have

in�mum 0 and supremum 1 on a set of admissible prospects. They suggest the admissible

prospects to be �limited only by feasibility and justice� (1999, p. 476), but do not specify

how. A distinguishing feature of the present contribution is to axiomatically formalize

how the welfare criterion should depend on the problem faced by society.

2. A two-period example

To illustrate the reference-dependent utilitarian criteria, consider the following class of

two-period risky intergenerational problems (similar to Selden (1978)). At period 0, an

amount ω > 0 of a good is available. This can be partly allocated for consumption of

generation 0, say x0, and, for the remaining part, invested in capital, say k1. When taking

decisions at 0, society has a probabilistic knowledge about the future. First, extinction

can arise with positive probability: let π ∈ (0, 1] be the likelihood that generation 1 exists.

Second, the output available in period 1, i.e. Ak1, depends on the realization of the

productivity shock A, which is a positive random variable with �nite mean.8 In period

1, a speci�c level of productivity realizes, say a. The output available is then ak1, which

can be allocated for the consumption of generation 1, say xa1. I denote the contingent

consumption of generation 1 by x1: it is a mapping that associates a consumption xa1
to each possible realization a of the productivity shock A. A risky intergenerational

problem is then identi�ed by the endowment ω, by the survival probability π, and by the

distribution of the productivity shock A.

A key feature of this class of problems is that intergenerational risk unfolds at di�erent

times. Some decisions�i.e. the consumption and investment choices at period 0�are

taken without knowing their exact e�ect on future generations; other decisions�the con-

sumption choices at period 1�are �more informed� as they can depend on the realization

8The characterization result is developed in a setting where the number of states of nature is �nite. This
is not without loss of generality. With in�nite many states of nature and arbitrary distributions of risk,
the reference allocation exists only on a subset of ethical parameters. Yet, provided that a reference
exists, the characterization of the criterion extends to continuous state spaces. I further discuss the
existence of the reference in Fn.9.
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of the technology shocks. This has two main implications. First, generations are subject

to di�erent risks. Second, unless society is willing to waste resources when more turns out

to be available, risk makes intergenerational inequalities unavoidable.

2.1. The reference and its role

To capture these unavoidable inequalities, I introduce the reference (allocation). The

reference answers the following question:

How would an egalitarian society distribute resources across generations?

The answer is here given by the unique allocation that satis�es the following two principles:

• E�ciency. An allocation cannot be the reference if there exists another feasible

allocation that assigns at least as much consumption to each generation at each

state of nature and strictly more to some.

• Recursive equity. At the reference, the consumption assigned to each generation at

each state of nature is the certainty equivalent of the consumption lottery assigned

to any later generations at states of nature that can still occur.

By e�ciency, the reference is an allocation (r0, r1) such that r1 = A (ω − r0). By recursive

equity, r0 is the certainty equivalent of r1; formally, society has to choose a real-valued

function µ such that r0 = µ−1 ◦ E [µ (r1)]. It is natural to select µ to be concave. The

concavity of µ ensures that the consumption risk faced by later generations be compensated

by a larger mean; the larger the concavity, the larger this compensation.9

If society was egalitarian, the optimal policy would be identi�ed by the reference (r0, r1).

In general, however, society might consider deviating from this reference. For example, a

small reduction of the consumption of generation 0, if combined with a su�ciently large

increase of consumption in period 1, might be considered welfare improving.

For a non-egalitarian society, the natural role of the reference is that of a watershed.

Assume generation 0 is assigned a consumption that is smaller than at the reference, i.e.

x0 < r0, while generation 1 is assigned a larger consumption than at the reference (in

the sense of statewise dominance, i.e. larger in each state of nature), denoted x1 � r1.

Then, society should consider generation 0 worse o� than generation 1: there is an ex-ante

9When µ is not too concave (exp [µ] is convex or µ is exponentially convex), the reference exists inde-
pendently of the distribution of risk. To illustrate, assume µ (x) =

(
x1−θ) / (1− θ) with θ > 0; then,

recursive equity and e�ciency are satis�ed when r0 equalizes (ω − r0)
(
E
[
A1−θ]) 1

1−θ . Assume the
severity of damages A−1, i.e. the inverse of the productivity, is Pareto distributed (thus fat-tailed)
with tail index τ > 0; formally, Pr (x̄ > x) = (amaxx)−τ for each x ≥ a−1

max, where x is the inverse
of the productivity shock and amax is the largest value that the productivity shock can take. Then,(
E
[
A1−θ]) 1

1−θ is �nite only if θ < τ + 1. Consequently, θ ≤ 1 emerges as a su�cient condition for
the existence of the reference. When instead θ ≥ τ + 1, society is so concerned with the risk faced by
generation 1 that, independently of r0, the certainty equivalent of r1 is arbitrarily close to 0 (but nu-
merically unde�ned). The concavity restriction on µ does not emerge in the axiomatic characterization
due to the assumption of a �nite state space. Remark, that society is allowed to set a di�erent function
µ for each risky intergenerational problem or, if it satis�es the restriction above, �x a unique µ.
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Figure 1: Ex-ante equity tells that (x0, x1) is socially less desirable than (r0, r1).

inequality between the assignment of generations 0 and 1. Assume also that the expected

consumption assigned to the generations at (r0, r1) and (x0, x1) is the same, i.e. there

exists ε > 0 such that x0 = r0 − ε and x1 = r1 + ε
π (the division by the probability of

existence π accounts for the fact that generation 1 might not exist). These allocations are

represented in Fig.1, where f (r1) and f (x1) are the probability densities functions of r1

and x1 respectively, while r0 and x1 are certain and have probability mass of 1. Then,

(x0, x1) can be thought of as obtained from (r0, r1) by transferring a (certain) consumption

from generation 0 to generation 1. A society that is averse to ex-ante inequalities�or

satis�es ex-ante equity�cannot prefer (x0, x1) to the reference (r0, r1).

The reference also guides society in the evaluation of ex-post inequalities. Assume gen-

eration 0 is assigned the reference consumption x0 = r0. Generation 1 is instead assigned

a consumption x1, which happens to be a mean-preserving spread of the reference con-

sumption r1: in some states of nature, generation 1 is assigned more than at the reference;

in others, it is assigned less than at the reference. This construction is represented in

Fig.2. Then, independently of which state of nature arises, at allocation (x0, x1) intergen-

erational inequalities realize with larger probability than at the reference. A society that

is averse to ex-post inequalities�or satis�es ex-post equity�cannot prefer (x0, x1) to the

reference (r0, r1).

2.2. The reference-dependent utilitarian criterion

In Section 3, I combine ex-ante and ex-post equity with other axioms and characterize the

reference-dependent utilitarian criterion. These other axioms are common in the literature:

�monotonicity� requires that social welfare increases when assigning more consumption;

�continuity� says that small changes of the allocation should not cause large jumps in

the level of social welfare; two types of �separability� give an additive structure to the
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Figure 2: Ex-post equity tells that (x0, x1) is socially less desirable than (r0, r1).

representation; and �ratio-scale comparability� requires the ranking to be invariant to

rescaling allocations. In the remaining part of this section, I illustrate and discuss the

reference-dependent utilitarian criterion and contrast it to the EDU criterion.

Given the reference r ≡ (r0, r1), the reference-dependent utilitarian welfare at allocation

x ≡ (x0, x1) is measured by:

W (x; r) = w

(
x0

r0

)
︸ ︷︷ ︸

welfare of gen. 0

+
E [r1]

r0
π︸ ︷︷ ︸

risk-adjusted

discount factor

· w ◦ v−1

E
[
r1v
(
x1
r1

)]
E [r1]


︸ ︷︷ ︸

welfare of gen. 1

, (1)

where w (z) =
(
z1−ρ) / (1− ρ) and v (z) = z1−γ with ρ, γ ≥ 0 and, to avoid further nota-

tion, ρ, γ 6= 0 (the ethical interpretation of these parameters is discussed in the following).

Society evaluates the consumption assigned to each generation in relation to what this

generation would be assigned at the reference. To understand its implications, I discuss

how social welfare changes around the reference. When each generation is assigned her

reference consumption, i.e. x = r, each achieves the same well-being and social welfare is

W (r; r) = (1− ρ)−1 + (Eπ [r1] /r0)π (1− ρ)−1.

Consider a transfer of consumption ε > 0 from generation 0 to generation 1. At the

margin, social welfare is unchanged:10

lim
ε→0

W
((
r0 − ε, r1 + ε

π

)
; r
)
−W (r; r)

ε
= 0.

10Note that the transfer is weighted by the probability of extinction to ensure that, in expected terms,
the same consumption is distributed.
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At the reference r, the marginal rate of substitution between the expected consumption

of the two generations is 1, ensuring that no generation is discriminated against.

The risk-adjusted discount factor de�ned in (1) is crucial. The risk-adjusted dis-

count factor expresses the weight that society gives to generation 1 in the social welfare

function. Two forces govern discounting. The �rst one is due to the gradual resolution of

risk. As later generations face more consumption risk than earlier ones, their assignment

at the egalitarian reference consists of a larger expected consumption E [r1] ≥ r0 (by the

concavity of the function µ). This leads to attributing larger weights to future generations

the larger the uncertainty about the future. The second force, moving in the opposite di-

rection, is due to the probability of extinction. When the extinction probability is positive,

i.e. π < 1, saving of resources is more costly as it is not sure future generations can bene�t

from it. This leads to attributing a smaller weight to future generations. Depending on

which force prevails, the discount factor can be above or below 1.

The above-de�ned transfer across generations (weakly) reduces social welfare as soon

as ε is not marginal. Intuitively, by ex-ante equity, society is averse to redistributions of

resources across generations that increase the gap with the reference. This aversion is

measured by the ex-ante inequality-aversion parameter ρ. When ρ = 0, society is

indi�erent to ex-ante inequalities and any such transfer leaves social welfare unchanged.

The larger ρ, the more society is reluctant to redistribute resources across generations away

from the reference. At the limit for ρ→∞, redistribution of resources across generations

is socially unacceptable.

Now, starting again from the reference, consider a mean-preserving spread in generation

1's assignment. The new allocation is (r0, r1 + εz), where z is a zero-mean noise term and

ε > 0 is a scalar such that r1 + εz � 0. At the margin, social welfare is unchanged:

lim
ε→0

W ((r0, r1 + εz) ; r)−W (r; r)

ε
= 0.

At the reference r, the marginal rate of substitution between the probability-weighted

consumption assigned to generation 1 at two di�erent states of nature is 1. This ensures

that the criterion does not discriminate between states of nature.

When instead the noise term is not marginal, the mean-preserving spread (weakly)

reduces social welfare. Intuitively, by ex-post equity, society is averse to redistributions

of resources across states of nature: such redistribution widens the inequalities across

generations which will eventually arise, independently of the state of nature. This aversion

is measured by the ex-post inequality-aversion parameter γ. When γ = 0, society

is indi�erent to such inequalities and the mean-preserving spread leaves social welfare

unchanged. The larger γ, the more society is reluctant to redistribute resources across

states of nature away from the reference. At the limit for γ → ∞, redistribution of

resources across states of nature is socially unacceptable.

Remark that the ex-ante and ex-post inequality-aversion parameters are independent of

the choice of the reference (and thus of the function µ) and re�ect di�erent value judge-
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ments. No matter which reference is chosen, these parameters measure the willingness

of society to deviate from it: the ex-ante parameter across time; the ex-post parameter

across states.

2.3. The optimal distribution of resources

I next discuss the implications of the reference-dependent utilitarian criterion for optimal-

ity by comparing its �rst order condition with that of the EDU criterion. A society that

maximizes (1) would optimally select an allocation x∗ ≡ (x∗0, x
∗
1) such that x∗1 = A (ω − x∗0)

and:11

w′
(
x∗0
r0

)
= E [A]πw′

(
E [x∗1]

E [r1]

)
. (2)

In contrast, an expected utilitarian planner would optimally select an allocation x̂ ≡
(x̂0, x̂1) such that x̂1 = A (ω − x̂0) and:

u′ (x̂0) = βE
[
Au′ (x̂1)

]
. (3)

The no-risk case. With probability 1, the productivity parameter is a > 0. Then, the

reference r assigns the same consumption r0 = r1 = a (ω − r0) to both generations. Thus,

the �rst order condition (2) simpli�es to:

w′ (x∗0) = aπw′ (x∗1) , (4)

which is equivalent to (3) when β = π and u (z) =
(
z1−η) / (1− η) with η = ρ. The

�rst order condition (4) is a natural requirement for the optimal allocation. Society is

willing to give more (less) consumption to generation 1 with respect to generation 0 if,

for each additional unit of consumption saved in period 0, more (less) than one unit can

be expected to become available to generation 1. Thus, aπ > 1 implies that x∗1 > x∗0 and,

similarly, aπ < 1 implies that x∗1 < x∗0.

The risky case. With risk, the two �rst order conditions diverge. To simplify the

comparison, I assume that the EDU discount factor corresponds to the survival probability,

i.e. β = π, and that the EDU evaluation function is u (z) =
(
z1−η) / (1− η). Then, (2)

can be written as: (
x∗0
r0

)−ρ
= E [A]π

(
ω − x∗0
ω − r0

)−ρ
, (5)

whereas (3) as:

(x̂0)−η = E
[
A1−η]π (ω − x̂0)−η . (6)

As before, the optimality condition for the reference-dependent utilitarian criterion (5)

11Remark that the reference (r0, r1) is here �xed. By e�ciency and recursive equity, it satis�es r1 =
A (ω − r0) and r0 = µ−1 ◦ E [µ (r1)], where µ is concave. In the presence of fat-tailed catastrophic
risks, concavity of µ does not ensure the existence of the reference: a su�cient condition is that µ is
exponentially convex, i.e. not too concave.
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requires assigning to generation 0 a smaller (larger) consumption than at the reference

if, for each unit of consumption saved in period 0, more (less) than one unit is expected

to become available in period 1. Thus, E [A]π > 1 implies that x∗0 < r0 and x∗1 � r1.

Symmetrically, E [A]π < 1 implies that x∗0 > r0 and x∗1 � r1. Intuitively, the simple

structure of the problem limits the choice of society: if the optimal allocation is non-

wasteful, society can only redistribute resources over time and not over states of nature.

Thus, it seems natural to redistribute resources away from the egalitarian reference to the

period in which resources provide the largest expected consumption.

Importantly, this does not mean that the reference-dependent utilitarian criterion is

insensitive to risk. Compare two risky intergenerational problems that only di�er in terms

of the dispersion of the productivity shock, say A′ has more weight in the tails than A.

While E [A] = E [A′], society accounts for the larger risk faced by generation 1 through

the reference. As the dispersion of the productivity shock increases, an egalitarian society

would assign a larger consumption to generation 1, implying r′0 < r0 and r′1 � r1. At

unchanged assignment, generation 1 is now considered worse o� than generation 0. By the

concavity of w (ρ ≥ 0), this triggers a consumption adjustment in favor of generation 1.

Consider now the optimality condition (6) for the EDU criterion. The crucial aspect is

that technological risk is accounted for through the term E
[
A1−η], i.e. the 1−η moment of

the productivity shock A. When η = 0, society selects the optimum based on the average

productivity shock E [A]. As η increases, society becomes more and more concerned

with small realizations of the shock: society increases the weight on those intergeneration

inequalities that might arise when generation 1 is worse o� than generation 0. As η > 1,

the term E
[
A1−η] becomes very sensitive to the distribution of the technological shock A.

In particular, when the probability of small productivity shocks is su�ciently high (the

right tail of A−1 has more mass than the exponential distribution), the 1− η moment of

A might be in�nite and (6) has no solution.

This puzzling aspect of EDU has been recently highlighted by Weitzman (2009): no

matter how small (but positive) x0 and no matter how large E [x1], the EDU criterion

may recommend saving more resources for the bene�t of generation 1.12 In contrast, this

problem does not seem to emerge with the reference-dependent utilitarian criterion. Since

E [A] is �nite, the optimal allocation selected by the FOC (5) always exists, independently

of the distribution of the productivity shock A and of the inequality aversion parameters.

12This result has been much debated recently. Weitzman explains: since �it cannot be the case that
society would pay an in�nite amount to abate one unit of carbon,...something must be very wrong
in the formulation of the underlying model� (Weitzman, 2014, p.545). In response, some economists
argue that the EDU criterion is not appropriate to evaluate intergenerational situations with fat-
tailed risks (see Millner (2013) for an overview). Unfortunately, this leaves no policy guidance for the
excluded class of situations, the relevance of which is ultimately an empirical question (see, among
others, Roe and Baker (2007); Weitzman (2009)). Other economists, instead, take this as evidence
that society should not place too much importance to inequalities across time and states of nature, i.e.
avoiding the problematic case of η > 1. Dasgupta (2008), instead, has proposed moral arguments for
society to select an evaluation function with η > 1. Independently, it is (at least) contentious whether
an egalitarian society would address inequalities by compressing the consumption of the �worse-o��
present generation for the bene�t of a �better-o�� next period generation.
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However, this conclusion relies on the existence of the reference. The reference captures

society's attidude towards inevitable risk and de�nes how much more future generations

should be assigned to be compensated for such risk; the inequality parameters capture

society's aversion to deviations from such reference. Thus, requiring the reference to ex-

ist limits the aversion of society to catastrophic events, while leaving ρ an independent

ethical choice. In EDU, the attitude to catastrophic events is embedded in the choice of

η. If catastrophic events do not justify enormous savings for the present generation, then

society has to select an evaluation function u with limited concavity, i.e. η < 1. The

unappealing implication is that such a society would react to a productivity reduction of

10% (uniform across states) by increasing the consumption assigned to the �rst genera-

tion. The substitution e�ect dominates the income e�ect and, consequently, society would

punish only the second generation for such productivity change (see Dasgupta (2008)).

2.4. The stochastic social discount rate

The social discount rate is the typical measure adopted in the economic literature to

describe the importance today of a unit of expected consumption tomorrow. The social

discount factor expresses the trade-o� between the marginal change in a future period and

the marginal change at period 0 that leaves social welfare unchanged. Similarly to Traeger

(2014), I consider here a stochastic version of the social discount rate, where a reduction

of consumption assigned at period 0, i.e. dx0, allows investing a fraction dε in a project

with stochastic return A. For computational simplicity, I assume that the return on the

investment A and the growth rate at x are jointly log-normally distributed.13

First, consider the case where x is a non-wasteful distribution of resources and, thus,

a candidate for the optimal allocation in our two period example.14 Then, the social

discount rate for the reference-dependent utilitarian criterion is:

d (x; r) = δ + α+ ρ (ḡx − ḡr) , (7)

where δ ≡ − lnπ is the rate of pure time preference, α ≡ − lnE [A] is the expected return

of the stochastic project, and ḡx and ḡr are, respectively, the expected consumption growth

rate at allocation x and at the reference r. The social trade-o� between consumption at

di�erent periods is the sum of three terms. The �rst term re�ects the probability of

extinction: the higher the probability π that generation 1 exists, the smaller the rate of

pure time preference δ. The second term re�ects the expected return of the stochastic

project (in the literature, it is usually set to 0 by assuming that E [A] = 1). The third

term is the product between the ex-ante inequality aversion parameter ρ and the di�erence

in expected growth between the allocation x and the reference r. If the growth rate at x is

13See the online appendix for the derivation of the results presented in this subsection.
14Since x is a non-wasteful distribution of resources, x1 = A (ω − x0) and the return on the investment A

and the growth rate at x have perfect positive correlation. In this case, the formula for the stochastic
social discount rate depends on the distribution of A only through the reference.
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larger than at r, i.e. (ḡx − ḡr) > 0, generation 1 is assigned a larger consumption than at

the reference, while generation 0 is assigned a smaller consumption than at the reference.

This justi�es discounting the consumption of generation 1 at a higher rate. The larger

the di�erence between the growth rates, the larger the priority society attributes to the

worse-o� generation. The degree to which society reacts to such di�erence is measured by

the ex-ante inequality aversion parameter ρ.

In the general case, the social discount rate becomes:

d (x; r) = δ + α+ ρ (ḡx − ḡr) + ρ

(
σ2
x

2
− σ2

r

2

)
− γ (1 + ρ)

(
σ2
x

2
+
σ2
r

2
− cσrσx

)
,

where σx and σr are, respectively, the standard deviations of the growth rates at allocation

x and at the reference r and c is their correlation. Thus, two further terms are added.

The �rst term tells that if the variance of the growth rate at allocation x is larger than the

variance of the growth rate at the reference r, society reacts by discounting the future more.

The degree to which society reacts to the di�erence in the growth variances is given by

the ex-ante inequality aversion parameter ρ. This force is contrasted by the second term,

expressing the ex-post concern of society (and its interaction for the ex-ante concern)

for having a larger risk of growth. In fact, society reduces the social discount rate in

proportion to the variance of the di�erence between the growth rates, i.e. σ2
x+σ2

r−2cσrσx.

The degree to which society reacts to this variance is given by the sum of the ex-post

inequality aversion parameter γ and the product of the ex-ante and ex-post inequality

aversion parameters ργ.

The social discount rate for the EDU criterion is similar, but di�erences are crucial:

d̄ (x; r) = δ̄ + α+ η (ḡx−ḡr) + η

(
σ2
x

2
−σ

2
r

2

)
− η (1 + η)

(
σ2
x

2
+
σ2
r

2
− cσrσx

)
,

where δ̄ ≡ − lnβ is the rate of pure time preference. Two changes emerge. First, the

parameters ρ and γ are substituted by the intertemporal elasticity η to consumption

changes. Second and most importantly, the expectation and the variance of the growth

rate at r disappear. Note that these terms all reduce the social discount rate of the

reference-dependent utilitarian criterion as compared to the EDU criterion. The intuition

is that the unavoidable risks, accounted for by r, justify some of the growth and volatility

of x and increase the weight that society attributes to generation 1. This di�erence may

address the di�culty of the EDU criterion to attribute a signi�cant social concern to future

technological risk (see Nordhaus (2008); Traeger (2014).
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3. The characterization result

3.1. A risky intergenerational problem15

Time is discrete and the horizon �nite: T ≡ {0, ..., t̄}, with t̄ ≥ 2. At period 0, a stock

of capital k0 > 0 is available. Production takes place and transforms capital into output.

Let Φ denote the set of all production functions φ : R+ → R+ that are strictly increasing,

continuous, and satisfy φ (0) = 0. The output can be partly assigned for consumption of

the current one-period living generation or, for the remaining part, saved for use in later

periods.16

Later periods are characterized by two types of risk. First, extinction may arise before

the end-period t̄. Second, technology is randomly selected from Φ. To clarify, at each

period, the decision about how to share output between consumption and investment is

made without knowing whether later generations will exist and, conditional on existence,

without knowing what technology will be available.

To formalize risk and its resolution over time, information disclosure takes the form of

an event tree. An event tree N is a �nite collection of nodes. Each node n ∈ N is either

associated a technology φn ∈ Φ or extinction. At period 0 there is a unique initial node n0:

only technology φn0 is known, while no future risk is yet resolved so that all �nal nodes

Nt̄ ⊂ N can be reached from n0. As time �ows, risk resolves. At the �nal period t̄ ∈ T ,
the full history of technology and extinction is known. Without loss of generality, each

�nal node n ∈ Nt̄ is reached with positive probability πn ∈ (0, 1], with
∑

n∈Nt̄ π
n = 1.

At each period t ∈ T , society knows the realization of history until t. Let Nt ⊂ N be

the subset of nodes at t. Each node n ∈ Nt is uniquely identi�ed by the subset of �nal

nodes Nt̄ (n) that can be reached from n.17 Extinction is irreversible. If node n ∈ N is

associated extinction, also each strict successors of n, i.e. N (n), is. Let N ` ⊆ N be the

tree obtained from N by eliminating the nodes that are associated extinction. For each

period t ∈ {1, ..., t̄}, the number of non-extinction nodes is larger than 3. Let πt ∈ (0, 1]

be the (unconditional) existence probability of generation t.

An allocation x speci�es a consumption xn for each node n ∈ N `
t and each generation

t ∈ T .18 By construction, the assignment of generation t at node n can only depend

on the information available at n, which consists of: (i) the technology realized and the

consumption and investment decisions taken until n; and (ii) the structure, the intensity,

15Vector inequalities are de�ned as follows: x ≥ y ⇔ [xi ≥ yi ∀i]; x > y ⇔ [x ≥ y and x 6= y]; and
x� y ⇔ [xi > yi ∀i].

16With some changes, the results extend to models with in�nite time horizon and/or exogenous population
dynamics. Di�culties with in�nite time horizon are well-known since at least Diamond (1965), but
can be addressed (among others) by weakening �e�ciency� Zuber and Asheim (2012). To tackle
exogenous population dynamics, the later-introduced transfer principles need to account for the number
of individuals involved in the transfers and lead to society weighing generations by their size.

17As standard, this requires that later partitions of possible histories are �ner. Formally, for each t ∈ T ,
each n ∈ Nt, and each n′ ∈ Nt+1, either Nt̄ (n) ⊇ Nt̄ (n′) or Nt̄ (n)

⋂
Nt̄ (n′) = ∅.

18Importantly, results are una�ected when xn is interpreted as some measure of well-being that gener-
ation t enjoys at node n. Clearly, the interpretation of the welfare criterion and of the axioms is
correspondingly changed.
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and the time resolution of technological risk, summarized by the event tree N . The domain

of allocations is X ≡ R|N
`|

++ .

An allocation x ∈ X is feasible if there exist a saving plan s ≡ (sn)n∈N` such that:

(i) for each period t ∈ T and each node n ∈ N `
t , φ

n (kn) ≥ xn + sn; (ii) for each period

t ∈ {1, ..., t̄} and each node n ∈ N `
t , k

n = sn
−
, where n− denotes the unique predecessor

of n; and (iii) kn0 = k0. Let Xf ⊂ X be the set of feasible allocations.

The problem of society is to de�ne a complete and transitive social ranking of alloca-

tions. Let R denote such ranking; then, xRx′ means that allocation x is socially at least

as desirable as allocation x′. The strict preference relation P and the indi�erence relation

I are the asymmetric and symmetric counterparts of R.

3.2. The identi�cation of the reference

When ranking allocations, society is guided by two main objectives of distributive justice.

The �rst is related to an e�ective use of resources. The most appealing allocation according

to this objective can be de�ned as follows.

E�ciency: An allocation x ∈ Xf satis�es e�ciency if there exist no allocation x′ ∈ Xf

such that x′ > x.

The second is related to the inequality in the distribution of resources. The most appealing

allocation according to this objective can be de�ned as follows.

Equality: An allocation x ∈ Xf satis�es equality if, for each n, n′ ∈ N `, xn = xn
′
.

Unfortunately, these two objectives are compatible only in the absence of risk. The in-

tuition goes as follows. Let C ≡
{
c ∈ R+

∣∣(c, ..., c) ∈ Xf
}
. By the assumptions on tech-

nology, this set has a maximal element c̄ ∈ C. In the absence of risk, the allocation that

assigns c̄ to each generation satis�es e�ciency and, by construction, also equality. The

example in Section 2 illustrates the di�culty of combining e�ciency and equity in the

presence of risk. For the same resources saved in period 0, the amount of consumption

that can be distributed at period 1 di�ers across states. Thus, any e�cient distribution

of resources cannot assign the same consumption to each generation at each node.

Giving priority to e�ciency, I suggest weakening equality.19 Equity is then interpreted

as follows: the consumption assigned to each generation at each node should be as desirable

as the lottery over consumption assigned to later generations, restricted to the states of

nature that can still occur. This way to identify the reference is closely related to the

concept of sustainability proposed by Asheim and Brekke (2002).

19The characterization of the social ranking is independent of the allocation selected for the reference.
When weakening e�ciency (instead of equality), the egalitarian reference assigns the same consumption
to each generation at each node and, by the isoelastic representation, drops from the social ranking.
In this case, an isoelastic version of the EDU criterion (with disentanglement of the risk and time
dimensions) emerges.
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Recursive equity: An allocation x ∈ Xf satis�es recursive equity if there exists a con-

cave function µ : R+ → R such that for each t, s ∈ T with s > t and each

n ∈ N `
t , x

n = µ−1 (E [µ (xs (n))]), where E is the expectation operator and

xs (n) is the random variable that takes value xn̄ if n̄ ∈ N `
s (n) occurs.

The following result states that e�ciency is compatible with recursive equity. Moreover,

these principles identify a unique allocation, denoted r. The proof is in the appendix.

Proposition 1. There exists a unique allocation r ∈ Xf that satis�es e�ciency and

recursive equity.

3.3. The social ranking: Axioms

The �rst axiom is related to e�ciency. Among two allocations, society prefers the one

which assigns more consumption.

Monotonicity: For each pair x, x̄ ∈ X, x > x̄ implies that xP x̄.

Next, the social ranking is required to be continuous. Small changes of the allocation are

associated small changes in the level of social welfare.

Continuity: For each x ∈ X, the sets {x̄ ∈ X |x̄ R x} and {x̄ ∈ X |xR x̄} are closed.

The next two axioms are central to the present analysis of intergenerational ethics. They

convey the idea that some inequalities, measured by contrast to the reference, are bad for

society and reduce (or at least cannot increase) social welfare.

The �rst deals with �ex-ante inequalities.� Comparing the assignments of two genera-

tions, say t and t′, there is an ex-ante inequality if, at each state of nature, t is assigned

more than at the equitable reference, while t′ is assigned less than at the equitable ref-

erence. Generation t is then considered better-o� than generation t′. The next axiom

requires that society does not rank higher allocations with larger ex-ante inequality. The

formalization is similar in spirit to Dalton (1920)'s transfer principle.

Ex-ante (intergenerational) equity: For each pair x, x̄ ∈ X, each pair t, t′ ∈ T , and
each ε ∈ R+, if

(i) xn = x̄n − ε
πt
≥ rn for each n ∈ N `

t ;

(ii) xn = x̄n + ε
πt′
≤ rn for each n ∈ N `

t′;

(iii) xn = x̄n for each n ∈ N `\
{
N `
t

⋃
N `
t′
}
;

then xR x̄.

The axiom reads as follows. At allocation x̄, generation t is assigned a larger consumption

than at the reference in each state (Condition i); generation t′ is assigned a smaller

consumption than at the reference in each state (Condition ii). De�ne a transfer ε from
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t to t′ which is: weighted by the respective extinction-probabilities; uniform across states;

and such that the ex-ante inequality is only reduced (but not overturned) by the transfer.

Then, ceteris paribus (Condition iii), the after-transfer allocation x is socially at least as

desirable as allocation x̄.

The second equity axiom deals with �ex-post inequalities.� Assume all generations but

t are assigned the consumption corresponding to the reference. An ex-post inequality

arises when generation t is assigned more than at the reference at one node and less than

at the reference at another node. If the �rst node is reached, generation t is going to be

better o� than later generations; if the latter node is reached, generation t is going to be

worse o� than later generations. In either cases, some inequality occurs. The next axiom

requires that society does not rank higher allocations with larger ex-post inequalities. The

formalization is similar to a mean preserving spread (Rothschild and Stiglitz, 1970).20 For

each t ∈ T and each n ∈ N `
t , the unconditional probability that node n is reached is

πn ≡
∑

n̄∈Nt̄(n) π
n̄.

Ex-post (intergenerational) equity: For each pair x, x̄ ∈ X, each t ∈ T , each pair

n, n′ ∈ N `
t , and each ε ∈ R+, if

(i) xn = x̄n − ε
πn ≥ r

n;

(ii) xn
′

= x̄n
′
+ ε

πn′
≤ rn′;

(iii) xñ = x̄ñ = rñ for each ñ ∈ N `\ {n, n′};

then xR x̄.

The axiom reads as follows. At allocation x̄, generation t's assignment at node n is

larger than at the reference (Condition i); generation t's assignment at node n′ is instead

smaller than at the reference (Condition ii). At all other nodes, generations are assigned

the reference consumptions both at x and x̄ (Condition iii). De�ne a transfer ε from n to

n′ which is: weighted by the probability that these nodes occur; and such that the ex-post

inequality is only reduced (but not overturned) by the transfer. Then, the after-transfer

allocation x is socially at least as desirable as the initial one x̄.

Next, the social ranking should be invariant to scale changes in individual consumptions.

This axiom ensures that society's distributional concern is limited to the ratio (and not

the absolute level) of generations' assignments.21

Ratio-scale invariance: For each pair x, x̄ ∈ X and each α > 0, xR x̄ if and only if

αxRαx̄.
20The mean preserving spread is obtained by transferring probability mass to the tales of the distribution,

but can be equivalently expressed as a regressive transfer across states of nature, weighted by the
likelihood of each. See Atkinson (1970).

21As clari�ed by Blackorby and Donaldson (1982), this axiom �involves picking an interpersonally signif-
icant norm such as a poverty line...and the positivity restriction prevents the use of this information
by assuming that everyone is above...� this poverty line. In the present setting, this poverty line
corresponds to a 0 consumption and can be interpreted as the consumption associated to a life barely
worth living.

17



The last two axioms introduce some type of separability in the evaluation. The �rst

separability axiom is across time. Assume generation t's assignment is the same at two

allocations x and x̄. Then, the social ranking of these allocations should not depend on

generation t's assignment. This requirement is standard in the literature and is closely

related to �independence of the utility of the dead� (Blackorby et al. (2005)).

Intergenerational separability: For each x, x̄, x̃, x̂ ∈ X and each t ∈ T such that:

(i) xn = x̄n and x̃n = x̂n for each n ∈ N `
t ;

(ii) xn = x̃n and x̄n = x̂n for each n ∈ N `\N `
t ;

then xR x̄ if and only if x̃ R x̂.

The second separability condition is across nodes, but within a period of time. Consider

two allocations x and x̄ that assign the same consumption to each generation but to

generation t. If furthermore t's assignment at a node n is una�ected by the choice, the

consumption assigned at n should be irrelevant for the ethical assessment.

Intragenerational separability: For each x, x̄, x̃, x̂ ∈ X, each t ∈ N , and each n ∈ N `
t

such that:

(i) xn = x̄n and x̃n = x̂n;

(ii) xn
′

= x̃n
′
and x̄n

′
= x̂n

′
for each n′ ∈ N `

t \ {n};

(iii) xn
′′

= x̄n
′′

= x̃n
′′

= x̂n
′′
for each n′′ ∈ N `\N `

t ;

then xR x̄ if and only if x̃ R x̂.

Ratio-scale invariance and the separability axioms are demanding requirements. Yet, these

have valuable implications and are, thus, common in the literature. First, they provide in-

formational parsimony: the comparison of allocations only requires information about the

relative consumptions of the generations a�ected by the choice. Second, these signi�cantly

simplify the social welfare function and, thus, can be easier applied for the computation

of optimization problems. Finally and most importantly, they ensure tractability of the

representation result and help understanding the e�ects of the reference on the social

evaluation.

3.4. The social ranking: the representation result

I �rst present the formulation of the criterion. For each t ∈ T , de�ne the (expected)

reference consumption of generation t as the average consumption that generation

t enjoys at the reference conditional on existence, i.e. rt ≡
∑

n∈N`
t
πnrn. For each t ∈ T ,

let γt ≥ 0 and de�ne the power function vt by setting, for each z ∈ R+, vt (z) = z1−γt if
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γt 6= 1 and vt (z) = ln z if γt = 1. Then, the welfare of generation t at x ∈ X is given

by:

Wt (x; r) ≡ v−1
t

 1

rt

∑
n∈N`

t

πnrnvt

(
xn

rn

) . (8)

What matters for the welfare of each generation is not the absolute level of consumption,

but the ratio between the assignment and the equitable reference at each node. The

parameter γt of the power function vt measures the ex-post inequality aversion at t:

the higher γt the less society is willing to accept di�erences between xn and rn. This

parameter may di�er across time since each period is di�erent in terms of the risk: in

principle, society might choose a time-dependent aversion to ex-post inequality to re�ect

the di�erent type and intensity of risk that characterizes each period. When vt is linear

(or γt = 0), the equitable reference is irrelevant and the welfare of generation t is given by

the expected consumption it is assigned, i.e. Wt (x; r) =
∑

n∈N`
t
πnxn; at the limit for vt

being in�nitely concave (or γt →∞), the welfare of generation t is measured by the lowest

ratio between the assigned and the reference consumption, i.e. Wt (x; r) = minn∈N`
t

xn

rn .

Let ρ ≥ 0 and de�ne w by setting, for each z ∈ R+, w (z) =
(
z1−ρ) / (1− ρ) if ρ 6= 1

and w (z) = ln z if ρ = 1. Then, intergenerational social welfare at x ∈ X is given

by:22

W (x; r) ≡
∑
t∈T

rtw (Wt (x; r)) . (9)

The welfare of each generation is transformed by the concave power function w, weighted

by the reference consumption, and then additively aggregated. The parameter ρ de�ning

the function w measures the ex-ante inequality aversion: the higher ρ, the less society

is willing to accept di�erences between each generation's welfare.

The innovative aspect of this speci�cation lies in the weights rt assigned to each gen-

eration's welfare. The reference consumption rt captures two important aspects of each

risky intergenerational problem: the likelihood that generation t exists; and the riskiness

of technology at t. The �rst aspect constitutes a standard argument for discounting later

generations. The larger the probability of extinction, the smaller the reference consump-

tion rt and, consequently, the smaller the weight generation t's welfare is given. The

second aspect is new. The more risky the technology in a later period, the more the egali-

tarian reference balances such risk with a larger expected consumption and, consequently,

the larger the weight generation t's welfare is given. The interplay of these two aspects

determines social discounting. Interestingly, a later generation might be assigned a larger

weight than an earlier one (corresponding to the case of negative �risk adjusted� discount

rates) when the second aspect dominates the �rst one.

I can now de�ne the welfare criterion.

22Note that this formulation is welfare equivalent to that of eq. (1) where the weights are normalized
with respect to the reference consumption of generation 0.
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The social ranking is reference-dependent utilitarian if it can be numerically repre-

sented by a social welfare function W as de�ned in (9); that is, for each pair of allocations

x, x̄ ∈ X:

xR x̄⇔W (x; r) ≥W (x̄; r) .

The main result establishes the equivalence between the above-introduced axioms and

the reference-dependent utilitarian criterion.23 The proof is in the appendix.

Theorem 1. A social ranking satis�es monotonicity, continuity, ex-ante equity, ex-post

equity, ratio-scale invariance, intergenerational separability, and intragenerational separa-

bility if and only if it is reference-dependent utilitarian.

4. Conclusions

In the literature, welfare issues involving intergenerational risks are generally addressed

by analogy to Harsanyi (1955)'s pioneering contribution to the evaluation of risky social

situations. Agents are simply reinterpreted as generations and time discounting is added.

I claim that such an approach disregards essential aspects of intergenerational risks. First,

risk resolves gradually over time. Second, it exposes generations to di�erent types and

quantity of risk. Third, risk is, to a large extent, uninsurable. Consequently, it naturally

generates inequalities across generations, independent of the state of nature that eventually

occurs.

The principles of justice introduced here take into account these aspects of intergenera-

tional risk. The �rst step is to choose a reference allocation. This allocation is identi�ed as

the most equitable among the e�cient allocations. It thus accounts for the time resolution

of risk, the heterogeneous risk faced by the generations, and the unavoidable inequalities

among generations. The second step is to assess allocations by contrast to such reference.

More speci�cally, the main principles introduced here tell that more inequalities�as mea-

sured with respect to the reference�cannot improve social welfare.

The axiomatic analysis singles out the class of reference-dependent utilitarian criteria.

These criteria avoid serious drawbacks of EDU, related to: (i) the choice of the correct rate

of social discounting; and (ii) the capacity of the criterion to accommodate social concern

to distributional issues. The drawback of reference-dependent utilitarianism is its time

inconsistency. This is in line with recent empirical evidence on household behavior (Giglio

et al. (2015)). Moreover, time inconsistency might not be considered fatal even from a

normative perspective as it only requires society to be sophisticated in its policy choices

23This result is independent of the choice of the reference. More precisely, the reference-dependent utili-

tarian criterion does not rely on the reference beeing chosen based on e�ciency and recursive equity.
For instance, combining equality with a weakening of e�ciency, the reference would assign the same
consumption at each node. The corresponding reference-dependent utilitarian criterion would then
simplify to an isoelastic additive criterion with di�erent elasticities of substitution over time and
states.
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(Pollak, 1968; Asheim and Mitra, 2016). Recent literature evaluating climate policies with

time-varying discount rates includes Karp (2005), Harstad (2016), and Gerlagh and Liski

(2017).

Several important features of intergenerational problems remain unaddressed and re-

quire further investigation. The analysis does not consider endogenous population issues

(see Blackorby et al. (2005)), which might substantially aggravate future resource scarcity.

Moreover, the �event tree� structure of information disclosure does not allow society to

address unawareness about future events (see Dekel et al. (1998)). Finally, the restric-

tion to a single dimension of well-being, with neither overlapping generations nor multiple

commodities, rules out the ethical di�culties of confronting con�icting views about what

constitutes a good life (see Piacquadio (2014)) and might lead to underestimating the

e�ects of environmental damages (see Sterner and Persson (2008)).
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A. Proofs

A.1. Proposition 1

Proof. I �rst show existence. Let Xf+ ⊂ R|N
`|

+ be such that x ∈ Xf+ if there exists

x′ ∈ Xf with x′ ≥ x.
De�ne XRE ⊆ Xf+ as the subset of allocations satisfying recursive equity. Let C0 ≡{
c ∈ R+

∣∣x0 = c for some x ∈ XRE
}
. The set C0 is non-empty: by assumption Xf 6= ∅

and, since the production functions are strictly increasing, concave, and satisfy no free

lunch, there exists x ∈ Xf and c > 0 such that, for each n ∈ N `, xn = c; thus x0 = c ∈ C0.

The set C0 is bounded: this immediately follows from Xf and Xf+ being bounded. The

set C0 is compact: this follows from the continuity of technology F , the concavity of

function µ, and the compactness of Xf+. Let x∗ ∈ XRE be such that x∗0 is the maximal

element of C0. By construction, x∗ satis�es recursive equity. By contradiction, assume

that x∗ does not satisfy e�ciency : then there exists x′ ∈ Xf such that x′ > x. Then, by
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the mentioned assumptions on technology, there exists a x′′ ∈ XRE such that x′′ � x∗,

contradicting x∗0 being a maximal element of C0. Finally, since x∗0 > 0 and technology is

strictly increasing and continuous, x∗ � 0 and, thus, x∗ ∈ Xf .

I next show uniqueness. By contradiction, assume there exists a pair x, x̄ ∈ Xf with

x 6= x̄ that satisfy e�ciency and recursive equity. Let t ∈ T be the �rst period for which

xn 6= x̄n for some n ∈ N `
t . If t = 0, x0 ≷ x̄0 and the same argument as above leads to a

contradiction of e�ciency for one of the two allocations. Assume t > 0 and de�ne:

XRE (n) ≡
{
x̂ ∈ XRE

∣∣∣x̂n′ = xn
′

= x̄n
′
for each n′ ∈ N `

t′ with t
′ < t

}
, and

C (n) ≡
{
c ∈ R+

∣∣c = x̂n for some x̂ ∈ XRE (n)
}
.

Again, the same reasoning as for C0 allows concluding that either xn = x̄n or one of the

two allocation does not satisfy e�ciency. A contradiction.

A.2. Theorem 1

Part 1. If a social ranking satis�es the axioms, then it is reference-dependent utilitarian.

The argument is divided in several steps. The proof of each can be found in the online

appendix unless stated otherwise. Assume the social ranking satis�es monotonicity, conti-

nuity, ex-ante equity, ex-post equity, ratio-scale invariance, intergenerational separability,

and intragenerational separability.

The �rst step shows that the social ranking R admits a speci�c functional representation,

which is continuous, increasing, and additive over time and, for each period, additive across

nodes. This is an implication of monotonicity, continuity, intergenerational separability,

and intragenerational separability.

Step 1. For each t ∈ T and each n ∈ N `
t , there exist continuous and strictly increasing

functions qt and v̄
n such that R is represented by:

V (x; r) =
∑
t∈T

qt

∑
n∈N`

t

v̄n (xn)

 . (10)

The next step highlights that, by ex-post equity and ratio-scale invariance, the function

v̄n is a concave transformation of the �relative consumption� xn/rn and is equal across

nodes belonging to the same period (up to an additive constant).

Step 2. For each t ∈ T , there exist strictly increasing and concave function vt : R+ →
R+ such that for each xn ∈ R+, each n ∈ N `

t , and some χn ∈ R:

v̄n (xn) = πnrnvt

(
xn

rn

)
+ χn.

By imposing ratio-scale invariance, the next step proves that vt is a power function.
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Step 3. For each t ∈ T , there exist constants ηt ∈ R+ and γt, η̄t ∈ R such that for each

a ∈ R+:

vt (a) =
ηt

1− γt
a1−γt + η̄t if γt 6= 1 and

vt (a) = ηt ln a+ η̄t if γt = 1.

For each t ∈ T , let qt (x; r) ≡ qt

(∑
n∈N`

t
v̄n (xn)

)
. Again by ratio-scale invariance,

qt (x; r) can be written as a product of a function ψt (to be identi�ed in the subsequent

step) and a speci�c positively linearly homogeneous function of x.

Step 4. For each t ∈ T , there exists an increasing functions ψt : R→ R such that, for

each x ∈ X,

qt (x; r) = ψt

(1− γt)

 ηt
1− γt

∑
n∈N`

t

πnrn
(
xn

rn

)1−γt
 1

1−γt

 if γt 6= 1 and

qt (x; r) = ψt

exp

ηt ∑
n∈N`

t

πnrn ln

(
xn

rn

) .

 if γt = 1.

Next, by ratio-scale invariance, also the function ψt needs to have a power form.

Step 5. There exists ρ ∈ R and, for each t ∈ T , ξt ∈ R+, such that for each a ∈ R and

each t ∈ T :

ψt (a) =
ξt

1− ρ
a1−ρ if ρ 6= 1,

ψt (a) = ξt ln a if ρ = 1.

Next, I impose ex-ante equity to determine restrictions on ρ and the parameters ξt and

ηt.

Step 6. The following parameter restrictions hold: ρ ≥ 0 and, for each t ∈ T , ξt = η−1
t

and ηt = 1−γt
rt

if γt 6= 1 and ηt = 1
rt
otherwise.

The last step combines the previous ones.

Step 7. Steps 1-6 imply that the social ranking is reference-dependent utilitarian.

Introducing the determined restrictions on parameters and substituting the functional

forms obtained in Steps 2-6 into the additive representation from Step 1 directly proves

the result.

Part 2. The reference-dependent utilitarian criterion satis�es the axioms.

Since the welfare criterion is increasing in the assigned utilities, it satis�es monotonicity.

Since it is continuous, it satis�es continuity. Since it is homogeneous with respect to the

allocation, it satis�es ratio-scale invariance. Since it is additive over each generation's

welfare, it satis�es intergenerational separability. Since for each t ∈ T , the assigned con-
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sumptions enter additively inWt (x; r), the welfare criterion also satis�es intragenerational

separability. The implications for ex-post equity and ex-ante are presented as lemmas. The

proofs can be found in the online appendix.

Lemma 1. If a social ordering is reference-dependent utilitarian, then it satis�es ex-post

equity.

Lemma 2. If a social ranking is reference-dependent utilitarian, then it satis�es ex-ante

equity.
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B. FOR ONLINE PUBLICATION: The stochastic social

discount rate

This section derives the stochastic social discount rate (see also Traeger (2014)). The

project trades a deterministic unit of consumption in period 0, i.e. dx0, against a fraction

dε of a stochastic project A, de�ned by the technology. Formally, the stochastic social

discount rate is characterized as the value

d ≡ ln
dε

−dx0
, (11)

that leaves overall welfare constant. For the reference-dependent utilitarian criterion, the

stochastic social discount rate d (x; r) depends on both the allocation x and the reference

r. To ensure that social welfare is unchanged, dε and dx0 satisfy:

d

dx0
w

(
x0

r0

)
dx0 +

E [r1]

r0
π · d

dε
w ◦ v−1

E
[
r1v
(
x1+εA
r1

)]
E [r1]

∣∣∣∣∣∣
ε=0

dε = 0. (12)

De�ne

W1 (ε) ≡ w ◦ v−1

E
[
r1v
(
x1+εA
r1

)]
E [r1]

 =
1

1− ρ

E
[
rγ1 (x1 + εA)1−γ

]
E [r1]


1−ρ
1−γ

.

Then, (12) can be written as:

d

dx0
w

(
x0

r0

)
dx0 +

E [r1]

r0
π · d

dε
W1 (ε)|ε=0 dε = 0. (13)

The e�ect of a marginal change in consumption at 0, using the de�nition of w, is:

d

dx0
w

(
x0

r0

)
= r−1+ρ

0 x−ρ0 . (14)
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The e�ect of a marginal stochastic project dε is:

d

dε
W1 (ε)|ε=0 =

E
[
rγ1x

1−γ
1

]
E [r1]


1−ρ
1−γ−1

E
[
Arγ1x

−γ
1

]
E [r1]

. (15)

B.1. Stochastic social discount rate: a simple case

Assume that x is a non-wasteful distribution of resources. Then, x1 = A (ω − x0) and, by

e�ciency of the reference, also r1 = A (ω − r0). Then, (15) signi�cantly simpli�es as:

d
dε W1 (ε)|ε=0 =

(
E[A(ω−r0)γ(ω−x0)1−γ]

E[A(ω−r0)]

) 1−ρ
1−γ−1

E[A(ω−r0)γ(ω−x0)−γ]
E[A(ω−r0)]

=
(
E [r1]−(1−γ)E [x1]1−γ

) 1−ρ
1−γ−1

E [A]E [r1]−(1−γ)E [x1]−γ

= E [r1]ρ−1E [x1]−ρE [A] .

Substituting the above expression and (14) in (13), gives:

r−1+ρ
0 x−ρ0 dx0 +

E [r1]

r0
πE [r1]ρ−1E [x1]−ρE [A] dε = 0,

and, simplifying,
dε

−dx0
= π−1E [A]−1

[
E [r1]

r0

]ρ [E [x1]

x0

]−ρ
.

Substuting in (11) and, considering that ḡr ≡ ln
[
E[r1]
r0

]
and that ḡx ≡ ln

[
E[x1]
x0

]
, the social

discount rate becomes:

d (x; r) = ln
dε

−dx0
= − lnπ − lnE [A] + ρ (ḡx − ḡr) .

De�ning δ ≡ − lnπ and α ≡ − lnE [A], gives the social discount rate (7). Note that, in

this case, no assumption on the distribution of A is needed.

B.2. Social discount rate: the general case

From now on, the return on the investment A and the growth rate at x are assumed to be

jointly log-normally distributed. Since r1 = A (ω − r0), this is equivalent to demanding

that the growth rate at r, i.e. gr ≡ ln
(
r1
r0

)
, and the growth rate at x, i.e. gx ≡ ln

(
x1
x0

)
,

are jointly log-normally distributed with correlation c and standard deviations σr and σx.

Now, using r1 = A (ω − r0), rewrite (15) as:

d

dε
W1 (ε)|ε=0 =

E
[
rγ1x

1−γ
1

]
E [r1]


1−ρ
1−γ−1

E
[
r1+γ

1 x−γ1

]
E [r1] (ω − r0)

. (16)
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By the de�nition of the growth rates and their distributional assumptions,

E
[
rγ1x

1−γ
1

]
= rγ0x

1−γ
0 E

[
eγgr+(1−γ)gx

]
= rγ0x

1−γ
0 eγḡr+(1−γ)ḡx+γ2 σ

2
r
2

+(1−γ)2 σ
2
x
2

+γ(1−γ)cσrσx .

Similarly,

E
[
r1+γ

1 x−γ1

]
= r1+γ

0 x−γ0 E
[
e(1+γ)gr−γgx

]
= r1+γ

0 x−γ0 e(1+γ)ḡr−γḡx+(1+γ)2 σ
2
r
2

+γ2 σ
2
x
2
−γ(1+γ)cσrσx .

Thus, substituting in (16) and rearranging, yields:

d
dε W1 (ε)|ε=0 = (ω − r0)−1

(
E[r1]
r0

)− 1−ρ
1−γ
(
r0
x0

)ρ
e

(
γ 1−ρ

1−γ+1
)
ḡr−ρḡx

e

(
γ2 1−ρ

1−γ+1+2γ
)
σ2
r
2

+(γ−(1−γ)ρ)
σ2
x
2
−(1+ρ)γcσrσx .

and, since E[r1]
E[A] = (ω − r0)−1 and E[r1]

r0
= E [egr ] = eḡr+

σ2
r
2 :

d
dε W1 (ε)|ε=0 = E[A]

E[r1]

(
r0
x0

)ρ
e
−ρ(ḡx−ḡr)−ρ

(
σ2
x
2
−σ

2
r
2

)
+γ(1+ρ)

(
σ2
x
2

+
σ2
r
2
−cσrσx

)
.

Substituting this expression in (13) and solving for dε
−dx0

, leads to the following social

discount rate:

d (x; r) = ln
dε

−dx0
= δ + α+ ρ (ḡx − ḡr) + ρ

(
σ2
x

2
− σ2

r

2

)
− γ (1 + ρ)

(
σ2
x

2
+
σ2
r

2
− cσrσx

)
,

where δ ≡ − lnπ and α ≡ − lnE [A].

B.3. Stochastic social discount rate: the EDU criterion

For the EDU criterion, the social discount rate is the value

d̄ (x) ≡ ln
dε

−dx0
, (17)

for which dε and dx0 satisfy:

d

dx0

x1−η
0

1− η
dx0 + β

d

dε
E

[
(x1 + εA)1−η

1− η

]∣∣∣∣∣
ε=0

dε = 0. (18)

The �rst derivative gives:
d

dx0

x1−η
0

1− η
= x−η0 .
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The second derivative can be written as:

d

dε
E

[
(x1 + εA)1−η

1− η

]∣∣∣∣∣
ε=0

= E
[
Ax−η1

]
.

Since the distributional assumption is made in terms of the growth rates at r and at x,

substitute A = r1 (ω − r0)−1 and solve:

E
[
Ax−η1

]
=

E[r1x−η1 ]
ω−r0 =

r0x
−η
0

ω−r0 E [egr−ηgx ]

=
r0x
−η
0

ω−r0 e
ḡr−ηḡx+

σ2
r
2

+η2 σ
2
x
2
−ηcσrσx ,

and, since E[r1]
E[A] = (ω − r0)−1 and E[r1]

r0
= E [egr ] = eḡr+

σ2
r
2 :

E
[
Ax−η1

]
= E [A]x−η0 e−ηḡx+η2 σ

2
x
2
−ηcσrσx .

Substituting in (18) and rearranging, yields:

dε

−dx0
= β−1E [A]−1 eηḡx−η

2 σ
2
x
2

+ηcσrσxdε.

This leads the stochastic social discount rate:

d̄ (x) = δ̄ + α+ ηḡx − η2σ
2
x

2
+ ηcσrσx,

where δ̄ ≡ − lnβ and α ≡ − lnE [A]. This expression is equivalent to that presented in

Subsection 2.4.

C. FOR ONLINE PUBLICATION: Detailed proofs

C.1. Proof of Step 1

Proof. By assumption, there are at least 3 periods and, for each period, there are at least

3 nodes of non-extinction. Since monotonicity implies the axiom of �strict essentiality,�

Gorman (1968)'s theorem on overlapping separable sets applies: �strict essentiality,� con-

tinuity, intergenerational separability, and intragenerational separability imply that there

exist continuous functions qt (one for each t ∈ T ) and v̄n (one for each n ∈ N `) such that

R is represented by (10).24 By monotonicity, it must be true that, for each t ∈ T and

each n ∈ N `
t , either qt and v̄

n are all strictly increasing or these are all strictly decreasing.

Either choices lead to ordinally equivalent representations of R.

24�Strict essentiality� states that each individual's assignment matters for the social ranking; see also
Blackorby and Donaldson (1982).
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C.2. Proof of Step 2

Proof. For each t ∈ T , each n ∈ N `
t , and each xn ∈ R+ de�ne:

vn
(
xn

rn

)
≡ v̄n (xn)

πnrn
.

Since v̄n is strictly increasing (by Step 1 ), also vn is. Let a pair x, x̄ ∈ X be such

that for some t ∈ T , a pair n, n′ ∈ N `
t , and a ε ∈ R+ the following conditions hold: (i)

xn = x̄n − ε

πn
≥ rn; (ii) xn′ = x̄n

′
+

ε

πn′
≤ rn′ ; and (iii) xñ = x̄ñ for each ñ ∈ N `\ {n, n′}.

By ex-post equity, xR x̄. By Step 1, this implies that V (x; r)−V (x̄; r) ≥ 0 or, using (iii),

that:
v̄n (xn)− v̄n

(
xn +

ε

πn

)
+

v̄n
′
(
xn
′
)
− v̄n′

(
xn
′ − ε

πn′

)
≥ 0

(19)

Substituting the functions vn and vn
′
in (19), gives:

πnrn
[
vn
(
xn

rn

)
− vn

(
xn

rn
+

ε

πnrn

)]
+

πn
′
rn
′

[
vn
′

(
xn
′

rn′

)
− vn′

(
xn
′

rn′
− ε

πn′rn′

)]
≥ 0.

If vn and vn
′
are di�erentiable at

(
xn

rn

)
and

(
xn
′

rn′

)
respectively, dividing by ε and taking

the limit for ε→ 0, yields:

∂vn (a)

∂a

∣∣∣∣
a=xn

rn

≤ ∂vn
′
(a)

∂a

∣∣∣∣∣
a=xn

′

rn
′

. (20)

Since vn and vn
′
are strictly increasing, these are di�erentiable almost everywhere. Thus,

(20) holds for almost all
(
xn

rn

)
≥ 1 ≥

(
xn
′

rn′

)
and, symmetrically, the reverse inequality

holds for almost all
(
xn

rn

)
≤ 1 ≤

(
xn
′

rn′

)
. Thus, if the functions are di�erentiable at 1,

∂vn(a)
∂a

∣∣∣
a=1

= ∂vn
′
(a)

∂a

∣∣∣∣
a=1

.

By proportionality and Step 1, V (x; r) ≥ V (x̄; r) if and only if V (bx; r) ≥ V (bx̄; r) for

each b > 0. Thus, equation (20) holds almost everywhere for each
(
xn

rn

)
≥ b ≥

(
xn
′

rn′

)
and each b > 0. Moreover, ∂vn(a)

∂a

∣∣∣
a=b

= ∂vn
′
(a)

∂a

∣∣∣∣
a=b

almost everywhere for each b > 0.

This implies that for each t ∈ T , there exists a strictly increasing and concave function

vt : R+ → R+ such that for each xn > 0, each n ∈ N `
t , and some constant χn ∈ R,

vt (xn) = vn (xn)− χn

πnrn . Substituting the de�nition of vn yields the result.
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C.3. Proof of Step 3

Proof. Let t ∈ T . Let a pair x, x̄ ∈ X be such that xn = x̄n for each n ∈ N `\N `
t . By

ratio-scale invariance, for each α > 0, x R x̄ if and only if αx R αx̄. By Step 1 and 2,

ratio-scale invariance implies that

∑
n∈N`

t

πnrn
[
vt

(
xn

rn

)
− vt

(
x̄n

rn

)]
≥ 0

if and only if ∑
n∈N`

t

πnrn
[
vt

(
αxn

rn

)
− vt

(
αx̄n

rn

)]
≥ 0.

Since vt is the same for each n ∈ N `
t , Theorem 6 of Roberts (1980) applies: this directly

implies that vt is an increasing a�ne transformation of a power function.

C.4. Proof of Step 4

Proof. Let t ∈ T . By Step 2,

qt (x; r) = qt

∑
n∈N`

t

πnrnvt

(
xn

rn

)
+ χt

 ,

where χt ≡
∑

n∈N`
t
χn. Let x, x̄ ∈ X be such that xn = x̄n for each n ∈ N `\N `

t . By ratio-

scale invariance, for each α > 0, V (x; r) ≥ V (x̄; r) if and only if V (αx; r) ≥ V (αx̄; r).

Since V is additive over time (Step 1), this is equivalent to qt (x; r) ≥ qt (x̄; r) if and only

if qt (αx; r) ≥ qt (αx̄; r). Thus qt is homothetic with respect to x. It follows that it can be

written as qt (x; r) = ψt (q̃t (x; r)) where ψt is an increasing function and q̃t is positively

linearly homogeneous and such that:

q̃t (x; r) =
∗
qt

∑
n∈N`

t

πnrnvt

(
xn

rn

)
+ χt

 ,

with
∗
qt continuous and increasing.

Case 1. Assume γt 6= 1. For each n ∈ N `
t , substitute vt (a) = ηt

1−γta
1−γt + η̄t (obtained

in Step 3):

q̃t (x; r) =
∗
qt

 ηt
1− γt

∑
n∈N`

t

πnrn
(
xn

rn

)1−γt
+ rtη̄t + χt

 .

Since q̃t (x; r) is positively linearly homogeneous, q̃t (αx; r) = αq̃t (x; r) for each α > 0.

Thus:
∗
qt

(
ηt

1−γtα
1−γt∑

n∈N`
t
πnrn

(
xn

rn

)1−γt
+ rtη̄t + χt

)
=

α
∗
qt

(
ηt

1−γt
∑

n∈N`
t
πnrn

(
xn

rn

)1−γt
+ rtη̄t + χt

)
.
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Since this holds for each x ∈ X, it follows that, for each y ∈ R:

∗
qt (y) = (1− γt) (y − rtη̄t − χt)

1
1−γt ,

and, substituting:

q̃t (x; r) = (1− γt)

 ηt
1− γt

∑
n∈N`

t

πnrn
(
xn

rn

)1−γt
 1

1−γt

.

Case 2. Assume γt = 1. For each n ∈ N `
t , substitute vt (a) = ηt ln a+ η̄t (obtained in

Step 3):

q̃t (x; r) =
∗
qt

ηt ∑
n∈N`

t

πnrn ln

(
xn

rn

)
+ rtη̄t + χt

 .

By the same reasoning as above, for each y ∈ R:

∗
qt (y) = exp (y − rtη̄t − χt)

1
1−γt ,

and, substituting:

q̃t (x; r) = exp

ηt ∑
n∈N`

t

πnrn ln

(
xn

rn

) .

C.5. Proof of Step 5

Proof. By ratio-scale invariance, for each pair x, x̄ ∈ X and each α > 0, x R x̄ if and

only if αxRαx̄. By Step 1 and substituting qt (x; r) for each t ∈ T , ratio-scale invariance

implies that ∑
t∈T

qt (x; r) ≥ 0 i�
∑
t∈T

qt (αx; r) ≥ 0.

By Step 4, qt (x; r) is the product of a function ψt and a function q̃t (x; r) that is positively

linearly homogeneous with respect to x. An immediate generalization of Theorem 6 in

Roberts (1980) applies: for each t ∈ T , ψt is an increasing a�ne transformation of a

power function; since the function ψt can be di�erent across time, each may be assigned

a di�erent positive weight ξt.

C.6. Proof of Step 6

Proof. Let a pair x, x̄ ∈ X be such that for some t, t′ ∈ T and a, b, ε ∈ R+:

(i)
xn

rn
=
x̄n

rn
− ε

πtrn
= a ≥ 1 for each n ∈ N `

t ;

(ii)
xn

rn
=
x̄n

rn
+

ε

πt′rn
= b ≤ 1for each n ∈ N `

t′ ;
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(iii) xn = x̄n for each n ∈ N `\
(
N `
t

⋃
N `
t′
)
.

By ex-ante equity, xR x̄ and, by Step 1 and (iii):

qt (x; r)− qt (x̄; r) + qt′ (x; r)− qt′ (x̄; r) ≥ 0.

By Steps 4 and 5, if γt 6= 1, then:

qt (x; r) =
1− γt
1− ρ

ξt

 ηt
1− γt

∑
n∈N`

t

πnrn (a)1−γt


1−ρ
1−γt

;

qt (x̄; r) =
1− γt
1− ρ

ξt

 ηt
1− γt

∑
n∈N`

t

πnrn
(
a+

ε

πtrn

)1−γt


1−ρ
1−γt

.

Thus, dividing qt (x; r)− qt (x̄; r) by ε and taking the limit for ε→ 0, gives:

ξt

(a)1−γt ηt
1− γt

∑
n∈N`

t

πnrn


1−ρ
1−γt

−1

lim
ε→0

qt (x; r)− qt (x̄; r)

ε
= ξta

−ρ
(

ηt
1− γt

rt

) γt−ρ
1−γt

ηt,

Whereas, if γt = 1, then:

qt (x; r) =
1

1− ρ
ξt

exp

ηt ∑
n∈N`

t

πnrn ln (a)1−γt

1−ρ

;

qt (x; r) =
1

1− ρ
ξt

exp

ηt ∑
n∈N`

t

πnrn ln

(
a+

ε

πtrn

)1−γt
1−ρ

.

In this case, dividing qt (x; r)− qt (x̄; r) by ε and taking the limit for ε→ 0, gives:

lim
ε→0

qt (x; r)− qt (x̄; r)

ε
= ξta

−ρ (ηtrt)
1−ρ ηt.

Similarly,

lim
ε→0

qt′ (x; r)− qt′ (x̄; r)

ε
=

−ξt′b
−ρ
(

ηt′
1−γt rt

) γt′−ρ
1−γt′ ηt′ if γt′ 6= 1

−ξt′b−ρ (ηt′rt′)
1−ρ ηt′ if γt′ = 1.

By ex-ante equity,

lim
ε→0

qt (x; r)− qt (x̄; r)

ε
≤ − lim

ε→0

qt′ (x; r)− qt′ (x̄; r)

ε
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for each a ≥ 1 ≥ b and independently of γt and γt′ . This requires that ρ ≥ 0;

ξt

(
ηt

1− γt
rt

) γt−ρ
1−γt

ηt = ξt (ηtrt)
1−ρ ηt = 1, and

ξt′

(
ηt′

1− γt
rt

) γt′−ρ
1−γt′

ηt′ = ξt′ (ηt′rt′)
1−ρ ηt′ = 1,

which are satis�ed when ξt = η−1
t , ξt′ = η−1

t′ , and

ηt =


1−γt
rt

if γt 6= 1

1
rt

if γt = 1, and

ηt′ =


1−γt′
rt′

if γt′ 6= 1

1
rt′

if γt′ = 1.

C.7. Proof of Lemma 1

Proof. Let a pair x, x̄ ∈ X be such that, for some t ∈ T , a pair n, n′ ∈ N `
t , and ε ∈ R+,

the following conditions hold: (i) xn = x̄n − ε
πn ≥ rn; (ii) xn

′
= x̄n

′
+ ε

n′ ≤ rn
′
; (iii)

xñ = x̄ñ for each ñ ∈ N `\ {n, n′}. I need to prove that xR x̄.

De�ne a ≡ xn

rn , ā ≡
x̄n

rn , b ≡
xn
′

rn′
, and b̄ ≡ x̄n

′

rn′
. By (i) and (ii) it follows that ā > a ≥

b > b̄. Condition (iii) implies that:

W (x; r)−W (x̄; r) ≥ 0 ⇔Wt (x; r)−Wt (x̄; r) ≥ 0.

Case γt 6= 1. First, let ζt ≡ 1− γt. By condition (iii), Wt (x; r)−Wt (x̄; r) ≥ 0 if only

if:

1

ζt

[
πnrn

(
aζt − āζt

)
+ πn

′
rn
′
(
bζt − b̄ζt

)]
≥ 0.

De�ne ∆ ≡ āζt−b̄ζt
ā−b̄ . Two subcases emerge: if ζt ∈ (0, 1], then ∆ > 0; if ζt < 0, then ∆ < 0.

Subcase ζt ∈ (0, 1]. By �rst-order approximation:

aζt =
(
ā− ε

πnrn

)ζt
≥ āζt − ε

πnrn
∆ and

bζt =
(
b̄+

ε

πn′rn′

)ζt
≥ b̄ζt +

ε

πn′rn′
∆.

Premultiply the �rst by πnrn and the second by πn
′
rn
′
. The sum of the resulting inequal-

ities gives:

πnrn
(
aζt − āζt

)
+ πn

′
rn
′
(
bζt − b̄ζt

)
≥ 0.
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Since ζt ∈ (0, 1], this proves that Wt (x; r)−Wt (x̄; r) and xR x̄.

Subcase ζt < 0. By �rst-order approximation:

aζt =
(
ā− ε

πnrn

)ζt
≤ āζt − ε

πnrn
∆ and

bζt =
(
b̄+

ε

πn′rn′

)ζt
≤ b̄ζt +

ε

πn′rn′
∆.

Premultiply the �rst by πnrn and the second by πn
′
rn
′
. The sum of the resulting inequal-

ities gives:

πnrn
(
aζt − āζt

)
+ πn

′
rn
′
(
bζt − b̄ζt

)
≤ 0.

Since ζt < 0, this proves that Wt (x; r)−Wt (x̄; r) and xR x̄.

Case γt = 1. By condition (iii), Wt (x; r)−Wt (x̄; r) ≥ 0 if only if:

πnrn (ln a− ln ā) + πn
′
rn
′ (

ln b− ln b̄
)
≥ 0.

De�ne ∆ ≡ ln ā−ln b̄
ā−b̄ . Since ā > b̄, ∆ > 0. By �rst order linear approximation:

ln a = ln
(
ā− ε

πnrn

)
≥ ln ā− ε

πnrn
∆ and

ln b = ln
(
b̄+

ε

πn′rn′

)
≥ ln b̄+

ε

πn′rn′
∆.

Premultiply the �rst by πnrn and the second by πn
′
rn
′
. The sum of the resulting gives

again the required inequality, proving that Wt (x; r)−Wt (x̄; r) and xR x̄.

C.8. Proof of Lemma 2

Proof. Let a pair x, x̄ ∈ X be such that for some t, t′ ∈ T , with t′ > t, and some a ∈ R+ the

following conditions hold: (i) xn

rn = x̄n

rn −
a

πtrn
≥ 1 for each n ∈ N `

t ; (ii)
xn

rn = x̄n

rn + a
πt′r

n ≤ 1

for each n ∈ N `
t′ ; (iii) x

ñ = x̄ñ for each ñ ∈ N `\
(
N `
t

⋃
N `
t′
)
. I need to prove that xR x̄.

De�ne ε ≡ a
k̄
for k̄ ∈ N+. Let

(
{xk}k∈[1,k̄]

)
∈ X k̄ be such that: (I) x1 = x and xk̄ = x̄;

(II) for each k ∈
[
1, k̄ − 1

]
,
xnk
rn =

xnk+1

rn −
ε

πtrn
for each n ∈ N `

t and
xnk
rn =

xnk+1

rn + ε
πt′r

n for each

n ∈ N `
t′ ; (III) x

ñ
k = xñ for each ñ ∈ N `\

(
N `
t

⋃
N `
t′
)
and each k ∈

[
1, k̄
]
. The proof consists

of showing that at the limit for k̄ →∞ (and thus for ε→ 0), W
(
xk; r

)
−W

(
xk+1; r

)
≥ 0;

then, by transitivity, the result follows. This is done �rst for ρ 6= 1 and then for ρ = 1.

Case ρ 6= 1. De�ne ζ ≡ 1− ρ. By condition (III),

W
(
xk; r

)
−W

(
xk+1; r

)
=

1

ζ
rt

[
Wt

(
xk; r

)ζ
−Wt

(
xk+1; r

)ζ]
+

1

ζ
rt′

[
Wt′

(
xk; r

)ζ
−Wt′

(
xk+1; r

)ζ]
.

(21)

By condition (II), xk+1 can be written as a function of xk and ε. De�ne the following
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functions by setting for each ε > 0:

et (ε) = Wt

(
xk+1; r

)
,

et′ (ε) = Wt′

(
xk+1; r

)
.

Let et (0) ≡ limε→0 et (ε) = Wt

(
xk; r

)
and et′ (0) ≡ limε→0 et′ (ε) = Wt′

(
xk; r

)
. Thus (21)

can be written as:

W
(
xk; r

)
−W

(
xk+1; r

)
=

1

ζ
rt

[
et (0)ζ − et (ε)ζ

]
+

1

ζ
rt′
[
et′ (ε)

ζ − et′ (0)ζ
]
.

Divide by ε, and take the limit for ε → 0 (or equivalently k̄ → ∞). As ε → 0,
1

ζ
rt
et (0)ζ − et (ε)ζ

ε
tends to:

1

ζ
rt

∂

∂ε
et (ε)ζ

∣∣∣∣
ε=0

= rtet (0)ζ−1 ∂et (ε)

∂ε

∣∣∣∣
ε=0

, (22)

while
1

ζ
rt′
et′ (0)ζ − et′ (ε)ζ

ε
tends to:

1

ζ
rt′

∂

∂ε
et′ (ε)

ζ

∣∣∣∣
ε=0

= rt′et′ (0)ζ−1 ∂et′ (ε)

∂ε

∣∣∣∣
ε=0

. (23)

Computing the derivatives of et and et′ , yields:

∂et (ε)

∂ε

∣∣∣∣
ε=0

= − 1

πtrt
et (0)1−γt

∑
n∈N`

t

πn
(
xnk
rn

)γt−1

; (24)

∂et′ (ε)

∂ε

∣∣∣∣
ε=0

=
1

πt′rt′
et′ (0)1−γt′

∑
n∈N`

t′

πn
(
xnk
rn

)γt′−1

. (25)

Substituting (24) in (22), leads to:

1

ζ
rt

∂

∂ε
et (ε)ζ

∣∣∣∣
ε=0

= −et (0)ζ−1

∑
n∈N`

t
πn
(
xnk
rn

)γt−1

∑
n∈N`

t
πn (et (0))γt−1 .

Since
xnk
rn
≥ 1 for each n ∈ N `

t , et (0) ≥ 1. Moreover ζ ≤ 1. Thus, et (0)ζ−1 ≤ 1. For the

same reasons and since γt ≤ 1, it follows that
∑
n∈N`

t

πn (et (0))γt−1 ≥
∑
n∈N`

t

πn
(
xnk
rn

)γt−1

.

Together, these imply that
1

ζ
rt

∂

∂ε
et (ε)ζ

∣∣∣∣
ε=0

≥ −1.
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Similarly, substitute (25) in (23) to get:

1

ζ
rt′

∂

∂ε
et′ (ε)

ζ

∣∣∣∣
ε=0

= et′ (0)ζ−1

∑
n∈N`

t′
πn
(
xnk
rn

)γt′−1

∑
n∈N`

t′
πn (et′ (0))γt′−1 .

As above (but with opposite signs), since
xnk
rn
≤ 1 for each n ∈ N `

t′ , et′ (0) ≤ 1; more-

over ζ ≤ 1; thus, et′ (0)ζ−1 ≥ 1. For the same reasons and since γt′ ≤ 1, it follows that∑
n∈N`

t′

πn (et′ (0))γt′−1 ≤
∑
n∈N`

t′

πn
(
xnk
rn

)γt′−1

. Together, these imply that
1

ζ
rt′

∂

∂ε
et′ (ε)

ζ

∣∣∣∣
ε=0

≥ 1.

Substituting in (21), this shows that, when k̄ →∞:

lim
ε→0

W (xk; r)−W (xk+1; r)

ε
=

1

ζ
rt

∂

∂ε
et (ε)ζ

∣∣∣∣
ε=0

+
1

ζ
rt′

∂

∂ε
et′ (ε)

ζ

∣∣∣∣
ε=0

≥ 0.

Since this inequality is true for each k ∈
[
1, k̄
]
, transitivity implies that W (x1; r) ≥

W (xk̄; r) or, equivalently, W (x; r) ≥W (x̄; r) and xR x̄.

Case ρ = 1. Similar steps lead to:

rt
∂

∂ε
ln et (ε)

∣∣∣∣
ε=0

= −et (0)−1

∑
n∈N`

t
πn
(
xnk
rn

)γt−1

∑
n∈N`

t
πn (et (0))γt−1 ≥ −1,

rt′
∂

∂ε
ln et′ (ε)

∣∣∣∣
ε=0

= et′ (0)−1

∑
n∈N`

t′
πn
(
xnk
rn

)γt′−1

∑
n∈N`

t′
πn (et′ (0))γt′−1

≥ 1.

Thus, when k̄ →∞, limε→0
W (xk;r)−W (xk+1;r)

ε and, by transitivity, xR x̄ follows.
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