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Abstract 

Geographical relationships between a housing unit and the surrounding major sites, such as 

public transportation and crime scenes, are fundamental factors that determine the value of 

housing. In this paper, we propose an empirical model to estimate the spatial effect caused by 

surrounding multiple sites that addresses the following three assumptions: (A1) the closer a 

site, the greater the impact may be; (A2) the impact differs according to the characteristics of 

a site; and (A3) the higher the ranking of proximity to a site, the greater the impact may be. We 

demonstrate an empirical application by using rental housing data in Tokyo, Japan, to examine 

how the clustering of train and subway stations influences the surrounding housing rental prices. 

We find that at least the three nearest stations (and at most the five nearest stations) from each 

housing unit need to be considered in the hedonic model. The results also suggest that the 

assumption (A3) can be a crucial factor in evaluating the spatial effect of multiple sites, and 

ignoring it would lead to a serious estimation bias. The proposed methodology is worth testing 

with such various spatial topics as transportation, foreclosures and polycentric cities. 

Keywords: spatial analysis, hedonic, accessibility measure, transportation 

 

1.  Introduction 

Geographical relationships between a housing unit and the surrounding major sites, such as 

public transportation, commercial facilities, schools, and crime scenes, as well as their 

characteristics, are fundamental factors determining the value of housing. In this paper, we 

propose an empirical model to estimate the aggregate spatial effect of multiple sites that 

accounts for the following three general assumptions: (A1) the closer a site, the greater its 

impact may be; (A2) an impact may differ according to the characteristics of a site; and (A3) 

the higher the ranking of proximity to a site, the greater the impact may be. 

In previous studies that use point-to-point data (accompanied by detailed addresses of housing 

and sites) to examine the spatial effect of multiple sites, three types of proximity variables have 

predominantly been used, namely, (i) the distance between a housing unit and its closest site,1 

                                                                 
1 Troy and Grove (2008), for example, compute the distance to the nearest park from each housing unit in 

Maryland and examine the impact of the crime rate at the park on neighboring housing values. Dorantes et 

al. (2011) and Gobbons and Machin (2005) both estimate the impact of the public transport infrastructure 

by comparing the coefficients of the distance to the closest stations before and after completion of the 

infrastructure. Ahlfeldt (2011) and Ahlfeldt and Wendland (2010) include minimum distances to various 
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(ii) the number of sites within a certain distance from a housing unit,2 and (iii) an indicator of 

whether any site is located within a certain distance from a housing unit.3  None of these 

proximity variables satisfies all the general assumptions above (Table 1). The use of each of 

these variables is justifiable under strict criteria, and failure to meet these criteria can lead to a 

biased estimate (Table 2). For instance, using only the first type of proximity variable (i.e., the 

distance to the closest site) in the hedonic estimation assumes that the second and third closest 

sites have no influence on the housing value, which is likely to result in overestimating the 

impact of the closest site.4 One possible solution to address the effect of multiple sites is to 

regress a housing value on distances to the sites that are closest, second closest, third closest, 

and so forth. However, adding multiple distances in the hedonic model would lead to a serious 

multicollinearity problem, preventing us from drawing reliable and meaningful interpretations 

of the spatial effect.5 Another possible remedy is to coordinate the second type of proximity 

variables with the first type,6 or to use a distance-weighted sum of sites within a certain area.7 

The main concern with these practices is the choice of an adequate buffer, which researchers 

typically determine in an arbitrary manner. Some studies attempt to avoid problems associated 

with multiple sites and spatial heterogeneity by restricting housing samples to those located 

very close to sites rather than by implementing variables to account for multiple sites.8 

<< insert Table 1 and 2, here >> 

                                                                 
locations, such as the station, main road, school, water space, green space, and industrial area, to estimate 

the land price. 
2 Many studies on the impact of foreclosures on neighborhoods use this type of variable (Gerardi et al., 

2015; Harding et al., 2009; Immergluck and Smith, 2006; Leonardo and Murdoch, 2009; Lin et al., 2009; 

Rogers and Winter, 2009; Schwartz et al., 2006; Shuetz et al., 2008). Instead of simply counting the sites, 

Srour et al. (2002) estimate the impact of social recreation areas, shopping centers, and workplaces by 

counting the number of retail employments and total employments and by measuring the area of park 

spaces. 
3 Linden and Rockoff (2008) use dummy variables indicating whether any sex offender is living within 0.1 

miles or within 0.1 to 0.3 miles from a transactional housing unit to estimate its impact on the property 

value. Other papers using this type of variable include studies on the impacts of wind power projects (Ben, 

2010) and of rail transit stations on housing values (Bowes and Ihlanfeldt, 2001; Forrest et al., 1995; Kahn, 

2007) and on the effect of foreclosures on crime (Cui and Walsh, 2015). 
4 This is because distances to the second and third closest sites, which may influence the housing value, are 

usually positively correlated with the distance to the closest site. Omitting these variables will lead to the 

upward bias of the effect of the closest site. Table 2 describes functional restrictions and potential biases 

caused by each proximity variable. 
5 In Appendix 2, the results of our application show that variance inflation factors (VIFs) of distance 

variables exceed the value of ten when we include distances to the first three closest sites. 
6 Sadayuki (2013) examines the externality of stigmatized property on neighbor housing values by using 

the shortest distance to a stigmatized property for each housing unit in the estimation. As an explanatory 

variable, he includes a count of stigmatized properties within a certain range of each housing unit to 

control for the impact of the clustering of stigmatized properties. 
7 Campbell et al. (2011) study the impact of foreclosures along with two types of proximity variables as 

controls. One variable is a count of foreclosures within 0.25 miles from each transactional housing unit. 

The other variable is a distance-weighted sum of foreclosures within 0.01 mile. Nok et al. (2014) examine 

the determinants of land prices, in which a distance-weighted sum of job opportunities at each CBD is used 

as an explanatory variable to control for the accessibility to CBDs. 
8 Pope (2008) excludes housing units that have more than one sex offender living within 0.15 miles. 

McMillen and McDonald (2004) estimate the impact of the infrastructure of the Midway rapid transit line 

in Cook County, Illinois, by excluding housing units that are located farther than 1.5 miles from the 

Midway line or closer to other kinds of lines. 
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Our proposed proximity measure is based on another type of measure, namely, an “accessibility 

measure,” which is characterized as a sum of gravity-base functions, each of which is 

decreasing in distance and increasing in the attractiveness of a destination. Among the 

numerous studies related to the accessibility measure, which has been developed in such fields 

of study as land use and transportation,9 the number of studies that apply it to the hedonic 

approach has been increasing in the past two decades (Appendix 1). Most of the accessibility 

measures in these studies of hedonic analysis are based on zone-to-zone rather than point-to-

point measures, i.e., the distances used in these measures are computed between zones (such 

as zip code areas, transportation analysis zones, and voting precincts) rather than between 

housing units and sites. This is done because the major purpose of these studies is to assess the 

accessibility from one city to employment opportunities in other cities by counting the number 

of employment or job opportunities in each area, thereby addressing the significance of a 

polycentric urban structure in determining the housing value.10  

In comparison with these studies, our focus is more of a local examination in which the spatial 

effect of multiple sites, such as public transportation, parks, supermarkets, foreclosures, and 

crime scenes, is unlikely to affect anyone beyond the neighborhood. Although the accessibility 

measure is superior to the three types of proximity variables listed earlier in the sense that it 

provides flexibility in the functional form, it still fails to take into account the third assumption 

(A3), which would result in a biased estimate (Tables 1 and 2). In our proposed proximity 

measure, we make several modifications to the conventional accessibility measure to fit it 

within the context of a point-to-point spatial analysis and to account for the third assumption 

(A3). In addition, our estimation procedure allows us to provide insights into questions within 

the context of a point-to-point spatial analysis such as “How many neighbor sites affect the 

housing value?” and “To what extent does each site have an influence on the housing value?” 

In the following section, we demonstrate two types of measures. The first type is the traditional 

accessibility measure with some minor modifications to the conventional accessibility measure 

used in previous studies, so that it fits within the context of point-to-point spatial analysis. The 

second type is a proposed proximity measure that also accounts for the third assumption (A3). 

In Section 3, we illustrate an application of the relationship between the housing rental value 

and the clustering of train and subway stations in Tokyo, Japan. In general, addressing a greater 

number of neighbor stations in an empirical model should be associated with a better estimation 

result if the model is correctly specified. However, we observe in the application that the 

traditional accessibility measure worsens the estimation result when the information of a 

greater number of stations is addressed in the model. This result is due to the incorrect 

functional specification of the spatial effect by failing to account for the third assumption (A3). 

The proposed measure solves this issue, and the estimation result improves with the number of 

stations considered in the model.  

Although all existing empirical studies on hedonic housing price analysis in Tokyo, to our 

knowledge, have taken only distance to the nearest station into account,11 our result shows that 

                                                                 
9 To name a few, Hansen (1959), Song (1996), Ottensmann and Lindsey (2008), Iacono et al. (2010), and 

Salze et al. (2011).  
10 Appendix 1 provides a detailed discussion on the traditional accessibility measures versus the hedonic 

approach in the previous empirical studies. 
11 To name a few, Diewert and Shimizu (2016), Gao and Asami (2001), Nakagawa et al. (2007), Shimizu 
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at least the first three closest stations need to be addressed to obtain a better estimate of the 

housing value in Tokyo, whereas including more than the five closest stations in the model 

does not improve the prediction. More importantly, this study reveals that both distances to 

sites and the order of proximity to each site can be a vital factor of the spatial effect, and 

ignoring this factor could result in a significant estimation bias.  

Some additional examinations with generalized proposed proximity measures are discussed in 

Appendix 2. Finally, Section 4 offers conclusions from the study. 

 

2.  Traditional accessibility measure and proposed proximity measure 

Traditional accessibility measure 

As discussed earlier, the intention of previous studies adopting an accessibility measure for the 

hedonic approach is to take into account the polycentric urban structure by constructing a 

measure of accessibility from one region to employment opportunities in other regions. 

Therefore, the first part of this section makes some minor modifications to the conventional 

accessibility measure used in previous studies to fit within the context of point-to-point spatial 

analysis. See Appendix 1 for further discussion on the conventional accessibility measure. 

Let us use a subscript i to refer to the ith housing unit and 𝑠𝑖(𝑗) to indicate the jth closest site 

from housing i. Then, the traditional accessibility measure redefined for our study is specified 

as follows: 

(3)  𝐺 ({𝑑𝑖(𝑗), 𝑞𝑖(𝑗), 𝑘𝑖(𝑗)}
𝑗=1

𝐽
)  = ∑ (∑ 𝐷𝑖(𝑗)

𝑘 𝑓𝑘(𝑑𝑖(𝑗), 𝑞𝑖(𝑗))𝐾
𝑘=1 ) + 𝑐(𝑗)

𝐽
𝑗=1 . 

On the left-hand side of the equation, a gravity-base function 𝐺(. ), representing a traditional 

accessibility measure, is a function of 𝑑𝑖(𝑗), 𝑞𝑖(𝑗) and 𝑘𝑖(𝑗) for j = {1,2, … , 𝐽}, where 𝑑𝑖(𝑗) is the 

distance from housing i to 𝑠𝑖(𝑗), 𝑞𝑖(𝑗) is a value representing quantitative characteristics of 𝑠𝑖(𝑗), 

𝑘𝑖(𝑗)  is a type of qualitative characteristic of 𝑠𝑖(𝑗) , and 𝐽  is the number of the closest sites 

addressed in the measure.  

Here, we explicitly describe two types of characteristics of sites in the model. One type is 

quantitative characteristics, represented by 𝑞𝑖(𝑗) , and the other is qualitative characteristics, 

𝑘𝑖(𝑗). The latter type is addressed on the right-hand side of the equation by introducing an 

indicator, 𝐷𝑖(𝑗)
𝑘 , to differentiate parameters among different types of sites. 𝐷(𝑗)

𝑘  takes a value of 

one if the qualitative characteristic of 𝑠𝑖(𝑗) is of type 𝑘 ∈ {1, … 𝐾} and takes a value of zero 

otherwise.12 The right-hand side of equation (3) shows that a traditional accessibility measure 

is basically a sum of 𝑓𝑘(. ) and 𝑐(𝑗) over j = {1,2, … , 𝐽}. 𝑓𝑘(. ) specifies a functional form of 

the spatial effect of a type-k site, and 𝑐(𝑗) is an intercept of the spatial effect of the jth closest 

                                                                 
and Nishimura (2007), Shimizu et al. (2010) and Yamagata et al. (2016). 
12 For instance, in the case of foreclosures (Xian, 2016), the quantitative characteristic can be the time that 

has passed since the evacuation of the previous owner, and the qualitative characteristic can be whether the 

foreclosing property receives the Neighborhood Stabilization Program (NSP) grant. In the case of crime 

scenes, the quantitative characteristic can be the time that has passed since the incident, and the qualitative 

characteristics can be the types of incidents, such as homicides, robberies, and assaults. 
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site. In regression, 𝑐(𝑗) cannot be estimated, because it is absorbed into a constant term of the 

hedonic function.  

Among various possible specifications for 𝑓𝑘(. ), the most commonly used exponential-type 

traditional accessibility measure can be written as: 

(4)  𝑓𝑘(. ) = 𝜏𝑘𝑞𝑖(𝑗)𝑒𝛼𝑘𝑑𝑖(𝑗) , 

where 𝜏𝑘 and 𝛼𝑘 are parameters to be estimated. If there is only a single type of qualitative 

characteristic, equation (3) reduces to 𝐺(. ) = ∑ 𝜏𝑞𝑖(𝑗)𝑒𝛼𝑑𝑖(𝑗)𝐽
𝑗=1 .13 The positive spatial effect 

of the quantitative characteristic, 𝑞𝑖(𝑗), of a type-k site is associated with a positive 𝜏𝑘, and vice 

versa. On the other hand, 𝛼𝑘 is expected to be negative in most cases because the spatial effect 

usually weakens with distance. One drawback of this exponential-type specification is that 

when a group of sites of a certain type of qualitative characteristic has no spatial effect, its 

parameters cannot be estimated, due to the identification problem; in particular, the estimate of 

𝛼𝑘  cannot be obtained when 𝜏𝑘  is zero.14  Accordingly, in addition to equation (4), we also 

examine an alternative specification for 𝑓𝑘(. ) as follows: 

(5)  𝑓𝑘(. ) = 𝜏𝑘𝑞𝑖(𝑗) + 𝛼𝑘𝑑𝑖(𝑗) + 𝜔𝑘. 

This linear-type specification assumes that the effect of distance and the effect of qualitative 

characteristics are determined independently. Here, a positive spatial effect of a type-k site is 

associated with a negative 𝛼𝑘, while a negative spatial effect is associated with a positive 𝛼𝑘. 

Equation (5) gives an estimate of 𝛼𝑘 even when 𝜏𝑘 is zero, whereas equation (4) cannot.  

Lastly, the traditional accessibility measure specified in equation (3) is a sum of 𝑓𝑘(. ) for the 

first J closest sites, instead of a sum for all destinations, as was typically done in previous 

studies (Appendix 1). Recall that the main objective of the previous studies is to examine the 

polycentric structure of labor markets, which requires a wide range in the study area to 

construct the accessibility measure, because individuals may commute far.15 In contrast, the 

spatial influence of foreclosures, crime scenes, and access to public transportation is likely to 

be limited to a local area. In such point-to-point examinations, using all sites in the whole study 

area to construct a proximity measure does not seem rational. Rather, we estimate the 

traditional accessibility measure using a different number of J, and we observe how adding the 

                                                                 
13 This simplified specification is equivalent to a commonly used conventional accessibility measure 

described in equation (8) in Appendix 1. 
14 Based on equation (4), the spatial effect of the jth closest site converges to a constant, 𝑐(𝑗), as the 

distance increases. One can also construct an alternative formula that allows a different limit for each type, 

such as 𝑓𝑘(. ) = 𝜏𝑘𝑞𝑖(𝑗)𝑒𝛼𝑘𝑑𝑖(𝑗) + 𝜔𝑘 . However, when the true specification of the spatial effect is close to 

linear with respect to distance, absolute values of 𝛼𝑘 and 𝜏𝑘 as well as their standard errors in this formula 

become so large that the estimation fails to identify parameters. In our application, although the results are 

not shown in this paper, the author estimates hedonic models using several alternative specifications of the 

proximity measure, including the one above, and finds that sites with some qualitative characteristics have 

the linear relationship between the distance and the rent. 
15 According to the 2011 American Community Survey, among U.S. workers who did not work at home, 

8.1 percent had commutes of 60 minutes or longer and 35.7% had commutes of 30 minutes or longer in 

2011. Census Bureau. In Tokyo, Japan, 24.2% had commutes of 60 minutes or longer and 69.8% had 

commutes of 30 minutes or longer in 2013, according to the 2013 Housing and Land Survey conducted by 

the Ministry of Internal Affairs and Communications. 
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number of closest sites to the model alters the estimation result. 

Proposed proximity measure 

On the basis of the above traditional accessibility measure, we propose a proximity measure 

that addresses the assumption (A3). This is done by adding a new term 𝑔𝑘(𝑗) to equation (4) 

such that 𝑓𝑘(. ) can be weighted differently depending on the proximity order and qualitative 

characteristics of a site: 

(6)  𝐺 ({𝑗, 𝑑𝑖(𝑗), 𝑞𝑖(𝑗), 𝑘𝑖(𝑗)}
𝑗=1

𝐽
)  = ∑ (∑ 𝐷𝑖(𝑗)

𝑘 𝑔𝑘(𝑗)𝑓𝑘(𝑑𝑖(𝑗), 𝑞𝑖(𝑗))𝐾
𝑘=1 ) + 𝑐(𝑗)

𝐽
𝑗=1 . 

One rational specification for the weighting function is 𝑔𝑘(𝑗) = 𝑗𝜃𝑘
. The parameter 𝜃𝑘 takes a 

negative value if a type-k site with a higher order proximity is more important than the type-k 

site with a lower order proximity. If all sites are equally important regardless of proximity 

orders, 𝜃𝑘 takes a value of zero, and equation (4) reduces to equation (3). On the other hand, 

when there exists such a discounting factor of the spatial effect with respect to the proximity 

order, the traditional accessibility measure (which does not take into account the third 

assumption) is likely to overestimate the impact of the higher-order-proximity sites and 

underestimate the impact of the lower-order-proximity sites (Table 2).  

The more general specification of the weighting function is given by 𝑔𝑘(𝑗) = 𝜃(𝑗)
𝑘 , where a 

parameter can differ by the proximity order and qualitative characteristics. There are two 

concerns when using this type of generalized parameter. One is the multicollinearity problem 

caused by the fact that 𝑓𝑘(. )’s are likely to be highly correlated among different js, and thus, 

𝜃(𝑗)
𝑘  may not give reliable interpretations. The other is the identification issue when 𝜃(𝑗)

𝑘  and 

the parameters in 𝑓(. ) are all supposed to be zero. 

In the following application about the relationship between housing rent and access to 

clustering stations, we compare the estimation results between hedonic functions using the 

traditional accessibility measures and the proposed proximity measures. Note that although we 

discuss in the following section the results using the weighting function specified as 𝑔𝑘(𝑗) =
𝑗𝜃𝑘

, additional examinations with the generalized specification, 𝑔𝑘(𝑗) = 𝜃(𝑗)
𝑘 , are reported in 

Appendix 2 in detail. 

 

3.  Application 

In this section, using cross-sectional data of Tokyo’s 23 wards, we examine the relationship 

between the housing rent and the surrounding train and subway stations. We first describe the 

data and the empirical models and then provide our estimation results. 

Data 

Data on rental housing in Tokyo’s 23 wards were collected from November 2011 to July 2012 

from the website of a rental real estate agency, Door Chintai.16 We have 14,404 housing sample 

                                                                 
16 http://chintai.door.ac/. 
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units located in 8,955 rental apartment buildings after removing samples with missing values 

as well as outlying observations of rental prices above the 99th percentile and below the first 

percentile. The data include rental prices and housing characteristics such as address, floor area, 

number of bedrooms, floor levels, number of stories in a building, age of the building, amenities 

(gas, stove, and security systems), number of retail stores within 1 mile, and building type and 

structure.17 Definitions of and basic statistics for the variables are described in Tables 3 and 4, 

respectively. The average rent in Tokyo’s 23 wards in the samples is approximately 89,600 yen 

per month, which is $896 per month based on an exchange rate of $1 = 100 yen. Most of the 

samples are apartment units, and a few are family houses. The average floor level is 2.96, and 

26% of the samples are located on the first floor. The average floor area is 30.73 square meters 

(330.77 square feet), and the average age of a building is 16.74 years.  

<<insert Tables 3 and 4, here>> 

We obtained geocodes for the existing train and subway stations as of October 2012 from the 

website EkiData.jp.18 Figure 1 shows the train and subway stations around Tokyo’s 23 wards. 

The data also include the names of the train and subway lines leading to each station. The 

number of lines leading to each station is used as a measure of the quantitative characteristics, 

𝑞𝑖(𝑗). There are 490 stations in Tokyo’s 23 wards, and we include an additional 137 stations 

surrounding Tokyo’s 23 wards in our analysis. Of the total 627 stations, 457 have one line, 105 

have two lines, 41 have three lines, and 27 have four or more lines. 

<<insert Figure 1, here>> 

Using these data sets, we compute the Euclidian distances between all combinations of housing 

and stations. We identify, based on the computed distances, the first nine closest stations from 

each housing sample i, i.e., 𝑠𝑖(1), … , 𝑠𝑖(9). For the qualitative characteristics, 𝑘, we categorize 

the first nine closest stations from each housing sample into two groups, 𝑘 ∈ {0,1}. One is k = 

1, a set of stations that have at least one line that do(es) not lead to any other stations closer to 

housing i. In other words, these stations are the closest stations to reach certain line(s) from 

housing i. For the sake of convenience, we call this kind of line(s) “new line(s)” at each station 

for housing i, indicating that the station is the closest from housing i to take the(se) line(s). We 

construct an indicator, 𝐷𝑖(𝑗)
1 , named “new-line dummy,” that takes a value of one for such a 

station with a new line(s) and takes a value of zero otherwise. Figure 2 is a visual illustration 

of how the values of the quantitative characteristics, 𝑞𝑖(𝑗), and the qualitative characteristics, 

𝑘𝑖(𝑗), are assigned. By construction, a new-line dummy for the closest station, 𝐷𝑖(1)
1 , always 

takes a value of one. When a new-line dummy takes a value of zero, that indicates that all lines 

leading to this particular station also lead to at least one closer station from housing i. Therefore, 

this type of station may be redundant for a person living in housing i in the sense that he/she 

can go to a closer station(s) to take any lines leading to this station.  

Basic statistics on distances, numbers of lines, and new-line dummies are shown in Table 5. 

The average distance to the closest station is 0.56 miles, and the average distances increase to 

0.93 and 1.20 miles for the second and third closest stations, respectively. The average number 

                                                                 
17 The geocoding system and the data on retail stores were provided by the Center for Spatial Information 

Science, The University of Tokyo. 
18 http://www.ekidata.jp/. 
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of lines leading to each station ranges from 1.38 to 1.49. Finally, approximately half of the 

second closest stations have a new line that does not lead to the closest station, whereas the 

proportion of stations with a new line decreases as the proximity order becomes lower. 

<<insert Figure 2 and Table 5, here>> 

Estimation models 

We estimate the hedonic rental price function as follows: 

(7) 𝑅𝑒𝑛𝑡𝑖 = 𝐺 ({𝑗, 𝑑𝑖(𝑗), 𝑞𝑖(𝑗), 𝐷𝑖(𝑗)
1 , 𝐷𝑖(𝑗)

0 }
𝑗=1

𝐽
) + 𝐗𝑖𝛃 + 𝑒𝑖 , 

where 𝑅𝑒𝑛𝑡𝑖 is the monthly rent of housing i; 𝐺(. ) is a proximity measure; 𝑑𝑖(𝑗) is the distance 

from housing i to the jth closest station, 𝑠𝑖(𝑗); 𝑞𝑖(𝑗) is the number of lines leading to 𝑠𝑖(𝑗); 𝐽 is 

the number of closest stations in the proximity measure; 𝐗𝑖 is a row vector of variables about 

neighborhood and housing characteristics; 𝛃 is a column vector of parameters associated with 

𝐗𝑖; and 𝑒𝑖 is an error term. 𝐷(𝑗)
1  = 1 if 𝑠𝑖(𝑗) has a line that does not lead to any of the closer 

stations, and 𝐷(𝑗)
1  = 0 otherwise. 𝐷𝑖(𝑗)

0  = 1 if and only if 𝐷(𝑗)
1  = 0. We examine four types of 

measures. 

Model A0 is an exponential-type traditional accessibility measure:  

 𝐺𝑖  = ∑ 𝐷𝑖(𝑗)
1 𝜏1𝑞𝑖(𝑗)𝑒𝛼1𝑑𝑖(𝑗) + 𝐷𝑖(𝑗)

0 𝜏0𝑞𝑖(𝑗)𝑒𝛼0𝑑𝑖(𝑗) + 𝑐(𝑗)
𝐽
𝑗=1 . 

Model B0 is a linear-type traditional accessibility measure:  

𝐺𝑖  = ∑ 𝐷𝑖(𝑗)
1 (𝜏1𝑞𝑖(𝑗) + 𝛼1𝑑𝑖(𝑗)) + 𝐷𝑖(𝑗)

0 (𝜏0𝑞𝑖(𝑗) + 𝛼0𝑑𝑖(𝑗)) + 𝐷𝑖(𝑗)
0 𝜔0 + 𝑐(𝑗)

𝐽
𝑗=1   

= 𝜏1 ∑ 𝐷𝑖(𝑗)
1 𝑞𝑖(𝑗)𝑗 + 𝛼1 ∑ 𝐷𝑖(𝑗)

1 𝑑𝑖(𝑗)𝑗 + 𝜏0 ∑ 𝐷𝑖(𝑗)
0 𝑞𝑖(𝑗)𝑗 + 𝛼0 ∑ 𝐷𝑖(𝑗)

0 𝑑𝑖(𝑗)𝑗 + 𝜔0 ∑ 𝐷𝑖(𝑗)
0

𝑗 + 𝑐(𝑗).  

Model A1 is a proposed proximity measure with weighting terms added to Model A0: 

 𝐺𝑖  = ∑ 𝐷𝑖(𝑗)
1 𝑗𝜃1

𝜏1𝑞𝑖(𝑗)𝑒𝛼1𝑑𝑖(𝑗) + 𝐷𝑖(𝑗)
0 (𝑗 − 1)𝜃0

𝜏0𝑞𝑖(𝑗)𝑒𝛼0𝑑𝑖(𝑗) + 𝑐(𝑗)
𝐽
𝑗=1 . 

And Model B1 is a proposed proximity measure with weighting terms added to Model B0:  

 𝐺𝑖  = ∑ 𝐷𝑖(𝑗)
1 𝑗𝜃1

(𝜏1𝑞𝑖(𝑗) + 𝛼1𝑑𝑖(𝑗)) + 𝐷𝑖(𝑗)
0 (𝑗 − 1)𝜃0

(𝜏0𝑞𝑖(𝑗) + 𝛼0𝑑𝑖(𝑗)) +𝐽
𝑗=1

𝐷𝑖(𝑗)
0 (𝑗 − 1)𝜃2

𝜔0 + 𝑐(𝑗) 

Model A0 is the traditional accessibility measure based on equation (4). Parameters differ 

between stations with and without a new line, namely, 𝐷𝑖(𝑗)
1  = 1 and 𝐷𝑖(𝑗)

0  = 1. Model B0 is a 

linearized version of Model A0, with the intent to estimate the effects of quantitative 

characteristics and distance separately. Model A0 has four parameters to be estimated, 𝜏1, 𝛼1, 

𝜏0, and 𝛼0, and Model B0 has five parameters, 𝜏1, 𝛼1, 𝜏0, 𝛼0, and 𝜔0. When J = 1, there are 

only two parameters, 𝜏1 and 𝛼1, to be estimated in both models, because the new-line dummy 

at the closest stations, 𝐷𝑖(1)
1 , is always one for all i. Because Model B0 can be expressed as a 

linear function, we employ OLS to estimate the hedonic function, whereas we employ the 

maximum likelihood method for the hedonic functions using the other three measures. 
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Model A1 adds the weighting terms 𝑗𝜃1
 and (𝑗 − 1)𝜃0

 to Model A0. If the spatial effect of a 

station diminishes with the proximity order ranking, these weighting parameters, 𝜃1 and 𝜃0, 

will be negative. To gain a better understanding of the role of weighting parameters, consider 

a case in which the closest station is located one mile away from housing i. Suppose that a new 

station on a different line will be constructed just half a mile away from housing i such that this 

new station will become the closest one and the former closest station will be the second closest. 

Will the impact of the former closest station on housing i stay the same even after the new 

station is constructed? If the answer is yes, it implies that 𝜃1 = 0, because the proximity order 

does not matter, only the distance does. If the impact of the former station is reduced because 

of the presence of the new station, then 𝜃1 < 0. The traditional accessibility measure can be 

regarded as a special case of Model A1, in which 𝜃1 = 0 and 𝜃0 = 0.  

In Model A1, when J = 1, there are only two parameters to be estimated, 𝜏1 and 𝛼1, and the 

result will be the same as the result in Model A0. Because the new-line dummy always takes a 

value of one, the second term on the right-hand side of the equation appears for 𝑗 ≥ 2. This is 

why we construct (𝑗 − 1) as the base of 𝑔𝑘(𝑗, 𝑘 = 0), so that 𝜏0 and 𝛼0 can be interpreted as 

the effects of the second closest station without a new line.19 On the other hand, 𝜏1 and 𝛼1 are 

the effects of the closest station because we have j as the base of 𝑔𝑘(𝑗, 𝑘 = 1). 

Model B1 is an extension of Model B0 with weighting parameters 𝜃1, 𝜃0, and 𝜃2. Here, 𝜔0 is 

a rental difference between two hypothetical housing units (that are located at the second 

closest stations with and without a new line, which are evaluated at 𝑑𝑖(2) = 0 and 𝑞𝑖(2) = 0). 

Because no such housing units exist, we will evaluate the rental difference at the mean value 

of 𝑑𝑖(2) and at 𝑞𝑖(2) = 1 in the application. There are two parameters in the proximity measure 

to be estimated in the model with J = 1, six parameters with J = 2, and eight parameters with J 

= 3 and above. 

Estimation results 

Model A0: Table 6 shows maximum likelihood estimates of hedonic functions with the 

traditional exponential-type accessibility measure, Model A0. Each column shows the results 

using a different number of stations in the accessibility measure (i.e., J = 1, 2, 3, 5, and 9). The 

table shows the results of estimated parameters in the accessibility measures as well as 

coefficients of some control variables in X. Numbers in parentheses are cluster-robust standard 

errors, assuming that residuals can be correlated within the same apartment buildings and are 

independent across the buildings. In addition, the log likelihood, the corrected Akaike 

information criteria (AICc), and the Bayesian information criteria (BIC) are shown at the 

bottom of the table. 

First, we look at the parameters of the accessibility measure. Overall, 𝜏1  and 𝛼1  show the 

expected signs and are statistically significant, implying that a station with a new line has a 

positive effect on the neighboring housing rent, i.e., the housing rent is higher near a station 

with more lines and is lower as the housing is located farther from the station. In contrast, 𝜏0 

and 𝛼0 are not significantly different from zero. This means that stations without a new line 

                                                                 
19 One can construct 𝑔(𝑗, 𝑘 = 0) = 𝑗𝜃0

 instead; however, doing so would hinder us from gaining a direct 

interpretation of the parameter, and the estimates of 𝜃0 and 𝜏0 would lose stability across different J.  
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have no influence on the surrounding housing rent. 

If the model specification is accurate, addressing a greater number of stations in the estimation 

should give a better prediction of the housing rent. However, according to the result, the log 

likelihood, AICc, and BIC, adding more stations in the model worsens the estimation result, in 

which case we suspect a model misspecification. Another sign of the possibility of the 

misspecification can be seen in unstable parameters across Js. 𝜏1 and 𝛼1 change from 0.39 to 

0.26 and from -1.52 to -2.24, respectively, as J increases from 1 to 9. This implies that the 

marginal effect of the distance and of the number of lines may vary among stations with 

different proximity orders.  

<< insert Table 6, here >> 

Model B0: Table 7 shows OLS estimates of parameters in Model B0.20 The positive signs of 𝜏1 

and 𝜏0 imply that the housing rent is higher if the surrounding stations have a greater number 

of lines. The negative sign of 𝛼1 means that the housing rent increases as the housing is located 

closer to a station with a new line. On the other hand,  𝛼0 is not significantly different from 

zero, meaning that the housing rent is not influenced by the distance to a neighbor station 

without a new line. Unlike the previous model, Model B0 estimates the effect of the number of 

lines and the effect of the distance separately. The results based on this model reveal that the 

number of lines at a station without a new line has a positive effect on the nearby housing rent, 

which is not shown in Model A0, where the marginal effects of distance and number of lines 

are assumed to be positively correlated by construction of the model. 

Similar to the results in Model A0, the estimation result becomes worse as J increases, as can 

be seen in the R2, log likelihood, AICc, and BIC. In addition, the parameters are unstable with 

different J, which indicates that the marginal effects differ by the proximity order of a station. 

In particular, magnitudes of the parameters become smaller as J increases, implying that the 

marginal effects may be smaller for stations with lower proximity orders. These issues arise 

because of failing to account for assumption (A3), as can be confirmed in the following results 

of the proposed models. 

<< insert Table 7, here >> 

Model A1: The first proposed model, Model A1, introduces weighting parameters to Model A0 

to address assumption (A3). The estimation results are shown in Table 8.  

Note that the result in column [8-1] of Table 8 is identical to the result in column [6-1] of Table 

6 for Model A0 because the functional forms of both models are the same when J = 1 (i.e., 

using only the closest station to construct a proximity measure). When J = 2, the results of the 

two models may differ because of a difference in the relative importance between the first and 

second closest stations. The traditional accessibility measure assumes that the first and second 

closest stations are equally important to residents, i.e., 𝜃1 = 0. According to [8-2], 𝜃1 is 2.27 

and the sign is statistically significant, implying that people perceive the closest station as being 

more important than the second closest station. In [8-3] to [8-5], 𝜃1 remains negative, whereas 

                                                                 
 20 Hereafter, only the estimates of the parameters in the proximity measure are shown. Coefficients of the 

control variables, X, are omitted from the result tables. 
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𝜃0 is not statistically different from zero.  

<< insert Table 8, here >> 

In contrast to the results for Model A0, adding a greater number of neighboring stations in 

Model A1 improves the estimation result. According to the AICc and BIC, the estimation 

improves as we increase J to 5. Also, 𝛼1 is relatively stable in Model A1 compared with Model 

A0. Another distinction from the result for Model A0 is that some of 𝛼0 turn to be significant 

in Model A1. Because 𝜏0  is negative, the negative 𝛼0  means that the rent increases as the 

housing is located farther from a station without a line. 

Figure 3 illustrates the housing rent versus the distance to a station based on the result in [8-4]. 

Here, the number of lines leading to a station is fixed at one. Note that the levels of lines on the 

y-axis are not comparable across different proximity orders, because 𝑐(𝑗)  is absorbed by a 

constant in the hedonic function and thus cannot be identified. When the distance to the closest 

station increases from 0.2 miles (10th percentile) to 1.0 miles (90th percentile), the monthly 

rent decreases by approximately 2,200 yen ($22, with $1 = 100 yen) on average. In addition, 

when the distance to the second station with a new line increases from 0.5 miles (10th 

percentile) to 1.5 miles (90th percentile), the rent declines by approximately 500 yen ($5, with 

$1 = 100 yen). In contrast, the housing rent increases as the housing is located farther from the 

second closest station without a new line.  

It is noted, however, that exponential-type models such as Models A0 and A1 impose a 

functional restriction, as mentioned earlier, in such a way that marginal effects of the distance 

and the number of lines are positively correlated (i.e., an increase in the number of lines is 

associated with an increase in the change of the marginal effect of the distance by construction 

of the measure). If this assumption is incorrect, Model A1 fails to give correct interpretations 

about the spatial effect.21  

<< insert Figure 3, here >> 

Model B1: The estimation results for the second proposed model, Model B1, are described in 

Table 9. Unlike the results for Model B0, the parameters become stable regardless of the choice 

of J. In addition, according to the AICc and BIC, the estimation result improves as we consider 

a greater number of stations in the model. As mentioned, adding more stations in the traditional 

accessibility measure worsens the estimation, which calls into question the credibility of using 

the traditional accessibility measure in our research. The two proposed models solve this 

problem by introducing weighting terms that assess different weights for the effects of stations 

by their proximity orders. Between the two proposed models, the performance of Model B1 is 

superior to that of Model A1, based on the information criteria (Figure 5). Both criteria decrease 

until J reaches 5. Therefore, we would take into account the first five stations closest to each 

housing unit to obtain a better prediction of the housing rent in Tokyo. 

Now, let us interpret the result in [9-4].22 Regarding a station with a new line, when 𝜏1 is 0.19, 

                                                                 
21 Unstable magnitudes of 𝛼0 and 𝜏0 and their large standard errors can be signs of the misspecification of 

the spatial model. 
22 [9-4] is selected among [9-1] to [9-5] based on the AICc and BIC.  
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the rent appreciates by 1,900 yen ($19) when the number of lines at the closest station increases 

by one. When 𝛼1 is 0.57, the rent decreases by 5,700 yen ($57) as the distance to the closest 

station increases by 1.0 mile. When 𝜃1 is negative, the marginal effects of the distance to and 

of the number of lines at a station with a new line diminish as its proximity order becomes 

lower. The marginal effects of these two variables are, respectively, 300 yen ($3) and 1,000 yen 

($10) for the second closest station with a new line.  

Regarding a station without a new line, 𝛼0 and 𝜏0 are positive23 but not statistically different 

from zero. The distance to and the number of lines at a station without a new line has no 

influence on the rent. This result implies that a line(s) that stops at a station is/are not important 

to residents as long as they have access to the line(s) at closer stations. Also, 𝜃0  shows a 

negative sign, but it is not statistically significant. Finally, 𝜔0  is 0.40, i.e., the rent of a 

hypothetical housing unit with 𝑑𝑖(2) = 0, 𝑞𝑖(2) = 0, and 𝐷𝑖(2)
1 = 1 is higher by 4,000 yen ($40) 

than the rent of a hypothetical housing unit with 𝑑𝑖(2) = 0, 𝑞𝑖(2) = 0, and 𝐷𝑖(2)
1 = 1. The rental 

difference, evaluated at the average distance to the second closest station (0.93 mile) and 

𝑞𝑖(2) = 1 is approximately 1,100 yen ($11) between housing units with and without a new line 

at the second closest station. If we consider a closer distance, for example, 0.50 miles 

(approximately the 10th percentile of the distance to the second closest station), the rental 

difference will be approximately 2,500 yen ($25). 

<< insert Table 9, here >> 

Further estimations (Appendix 2) 

In Appendix 2, we examine alternative models with some generalized specifications for the 

proposed proximity measures. We test two types of generalizations for each of the two proposed 

models, Model A1 and Model B1. In the first type, we set 𝑔𝑘(𝑗) = 𝜃(𝑗)
𝑘   such that the 

discounting weights are free from the functional form, which is restricted to 𝑔𝑘(𝑗) = 𝑗𝜃𝑘
 in 

Models A1 and B1. In the second type, we allow all parameters in 𝑓𝑘(. ) to vary by proximity 

order and by qualitative characteristics, i.e., 𝜏(𝑗)
𝑘 , 𝛼(𝑗)

𝑘 , and 𝜔(𝑗)
𝑘 .  

Although the estimation results and a detailed discussion are provided in Appendix 2, the 

results can be summarized as follows. First, the generalizations of Model A1 lead to an 

identification problem when we set J = 4 or more, preventing the maximum likelihood 

estimation from identifying the parameters. This is attributed to the fact that stations without a 

new line have too little effect on the housing rent when the ranking of the proximity order 

becomes lower than three. In such a case, the models fail to identify parameters between 𝜃(𝑗)
0  

and 𝜏0  in the first type of generalization and between 𝜏(𝑗)
0   and 𝛼(𝑗)

0   in the second type of 

generalization. In contrast, both of the generalized models for Model B1 identify every 

parameter, regardless of the choice of J. Between Model B1 and the corresponding two 

generalized models, the AICc shows the superiority of the generalized models, whereas the 

BIC prefers Model B1 to them. Although the model selection remains an open question, we 

                                                                 
23 One possible explanation of the positive 𝛼0 is that the distance to the second closest station without a 

new line is likely positively correlated with the distance to a railway leading to the first two closest 

stations. A railway can be a disamenity to nearby housing because of the noise it generates (Andersson et 

al., 2010; Mrons et al., 2003; Diao et al., 2015; Poon, 1975). In future research, taking into account the 

distance to railways may provide further insights into our findings. 
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conclude that Model B1 holds an advantage to the other models in our applications in the sense 

that it provides meaningful interpretations (without suffering from a serious multicollinearity 

problem) of the spatial effect of the clustering stations on the housing rent. 

 

4.  Conclusion 

The aim of this paper is to construct an empirical model to estimate the spatial effect of multiple 

sites that satisfies three general assumptions: (A1) the closer a site, the greater the effect may 

be, (A2) the impact of a site differs according to its characteristics, and (A3) the lower the 

proximity order of a site, the lower the impact may be. The last assumption (A3) in particular 

was not considered in previous empirical studies dealing with multiple sites. Thus, we propose 

two models, based on the exponential-type and linear-type gravity-base measure, by 

introducing an additional term that assigns different weights to the spatial effect of each site 

depending on its proximity order.  

We employ the application of housing rent in relation to multiple surrounding train and subway 

stations in Tokyo. The estimation result is supposed to improve with the number of stations 

used in the proximity measure if the model is correctly specified. However, when we use the 

traditional accessibility measure in the hedonic model, the prediction power declines as we 

increase the number of stations in the model. This result suggests that the traditional 

accessibility measure, which does not account for the third assumption (A3), is not an 

appropriate model within the context of our application. In contrast, the proposed models solve 

this problem and obtain better results when we include a greater number of stations in the 

models. Although, to our knowledge, all the studies analyzing the housing market in Tokyo 

address only the closest station in the hedonic model, our study shows that the housing rent in 

Tokyo is influenced by at least the first three to five closest stations. It also shows that including 

more than the first five closest stations in the model does not improve the estimation result.  

We also observe in the application that linear-type proximity measures (Model B0 and its 

extended models) perform better than exponential-type proximity measures (Model A0 and its 

extended models) based on the AICc and BIC. One of the advantages of the linear-type 

proximity measure is its ability to estimate marginal effects of distance and of quantitative 

characteristics independently. Because the exponential-type proximity measure imposes a 

positive correlation between these two marginal effects by construction of the functional form, 

it fails to give a valid interpretation of the result when its assumption is not true. Even more, it 

fails to give estimates when the marginal effect of the quantitative characteristics is too small 

and/or when the spatial effect actually takes a linear form. Among the three linear-type 

proximity measures (Model B1 and its generalized measures, presented in Appendix 2), the 

choice of the best model remains an open question, based on the AICc and BIC. Nevertheless, 

the simplest specification of Model B1 is practical in the sense that it gives clear interpretations 

about the spatial effect of clustering stations without facing the multicollinearity problem. 

The proposed models are applicable to spatial analyses dealing with various types of multiple 

sites, such as crime scenes, foreclosures, and neighbor amenities. For each application, the 

proximity measure needs to be used with appropriate quantitative and qualitative characteristics 
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of sites of interest. For instance, for a study of multiple crime scenes in neighborhood, a 

quantitative characteristic could be the time passed since an incident, and a qualitative 

characteristic could be a type of incident such as homicide, robbery or assault. For the 

examination of the effect of accessibility to grocery stores, the quantitative and qualitative 

characteristics could be replaced by the store’s floor area (or sales) and the type of store, 

respectively. 

Lastly, we suggest that this methodology is worth testing with studies on polycentric urban 

structure, where one could examine whether or not the proximity order matters when assessing 

the effect of the accessibility to surrounding cities. Also, it would be interesting to construct a 

proposed proximity measure by using commuting time as the distance measure (instead of 

using the physical distance) to examine the effect of the introduction of a new transport system, 

such as high-speed rail, that may change the order of time distance from one city to another 

without changing the physical distance between them. 
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Appendix 1:  Traditional accessibility measure in a hedonic model 

This appendix discusses the accessibility measure used in the hedonic analysis in the previous 

studies listed in Table 10. Table 2 summarizes most of the following discussion. The hedonic 

model accompanied with a traditional zone-to-zone accessibility measure is described as: 

(8) 𝑦𝑖,𝑧 = 𝐺({𝑑𝑧𝑧′, 𝑞𝑧′}𝑧′∈𝐙) + 𝐗𝑖𝛃 + 𝑒𝑖, 

where 𝑦𝑖  is a property value of housing 𝑖 ∈ {1, … , 𝑁}  in a region 𝑧 ∈ {1, … , 𝑍} , 𝐺( . )  is an 

accessibility measure, 𝐗𝑖 is a vector containing a constant value and control variables affecting 

𝑦𝑖, 𝛃 is a vector of parameters to be estimated, and 𝑒𝑖 is an error term.  

The accessibility measure 𝐺( . ) is a function of distances from the region of housing i to all 

regions {𝑑𝑧𝑧′}𝑧′∈𝐙 in the study area and of regional characteristics {𝑞𝑧′}𝑧′∈𝐙. A distance of two 

regions can be calculated as a Euclidian distance between central points of the two regions, or 

it can be calculated based on the transportation time and fees between major stations in two 

regions. Typically, the number of employees and jobs are used as the values for the regional 

characteristics. 

Among various accessibility measures that have been examined in existing studies, types of 

gravity-base formulas, introduced by Hansen (1959), are recognized to perform better than 

other types of accessibility measures in terms of predictive power and the flexibility of 

functional form. The most commonly used gravity-base accessibility measure is a negative-

exponential type, described as, 

(9) 𝐺𝑖,𝑧 = ∑ 𝜏𝑞𝑧′𝑒
𝛼𝑑𝑧𝑧′

𝑧′∈𝐙  

where 𝜏 and 𝛼 are parameters to be estimated. The previous studies find 𝜏 being positive and 

𝛼 being negative, that is, the region with more job opportunities has a positive influence on the 

housing value in surrounding regions, while the impact becomes lower with distance. Various 

extensions of measure (9) are possible as long as parameters can be identified. The other typical 

type of gravity-base accessibility measure is an inverse-power type, 𝐺𝑖,𝑧 = 𝜏 ∑ 𝑞𝑧′𝑑𝑧𝑧′
𝜆

𝑧′∈𝐙  

where 𝜆  takes a negative sign (Song, 1996; Saize et al., 2011). The weighted sum of 

foreclosures used in Campbell et al. (2011) is equivalent to the inverse-power type of 

accessibility measure, where they impose 𝑞𝑧′ = 1 and 𝜆 = −1.  

A boundary condition is one of the issues of the accessibility measure. Since regions by which 

the accessibility measure is computed are censored in many studies, the measure tends to be 

underestimated near the boundary of the study area. Two approaches have been adapted to 

address this issue. One is to include surrounding regions to compute accessibility measures for 

the area of interest. However, the accessibility measure still tends to be overestimated in the 

center of study area even under such a treatment as long as the entire area is used to construct 

the measure. The other approach is to limit the regions from each housing to compute the 

accessibility measure (Gjestland et al., 2014). 

Given the nonlinearity of the accessibility measure, three approaches have been used to 

estimate the hedonic model in the previous studies. The first approach is the maximum 

likelihood method, or nonlinear regression, which is practical in the sense that the estimation 
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can be performed in a single step. It is also reliable, because it ensures the validity of the 

functional specification by obtaining a result. We suspect that the main reason some studies 

avoid using this approach is partly due to inappropriate specification of the model, which 

prevents the estimation from identifying parameters in the measure. The second approach, the 

grid-search method, may help obtain an estimation result in the presence of the identification 

problem, although it means that the estimates can be quite unstable. In the grid-search method, 

numbers of linear regressions with various combinations of parameters are employed to find 

the one that yields the highest likelihood or R-squared. Accordingly, the results using the grid-

search method do not provide standard errors of the parameters, and thus, it is difficult to 

discern the stability of the parameters. The third approach is to assign specific values to 

parameters in the nonlinear terms and then to run the ordinary least squares to estimate the 

hedonic model. These values are typically taken from other studies or are estimated prior to the 

hedonic estimation. 

<< insert Table 10, here >> 
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Appendix 2:  Additional estimations 

This appendix discusses extended versions of the proposed proximity measure examined in the 

text. Let us start with extended specifications of Model A1 as follows: 

Model A2 

𝐺𝑖  = ∑ 𝐷𝑖(𝑗)
1 𝜃(𝑗)

1 𝜏1𝑞𝑖(𝑗)𝑒𝛼1𝑑𝑖(𝑗) + 𝐷𝑖(𝑗)
0 𝜃(𝑗)

0 𝜏0𝑞𝑖(𝑗)𝑒𝛼0𝑑𝑖(𝑗) + 𝑐(𝑗)
𝐽
𝑗=1   

Model A3 

𝐺𝑖  = ∑ 𝐷𝑖(𝑗)
1 𝜏(𝑗)

1 𝑞𝑖(𝑗)𝑒𝛼(𝑗)
1 𝑑𝑖(𝑗) + 𝐷𝑖(𝑗)

0 𝜏(𝑗)
0 𝑞𝑖(𝑗)𝑒𝛼(𝑗)

0 𝑑𝑖(𝑗) + 𝑐(𝑗)
𝐽
𝑗=1   

Recall that the general function of a proposed proximity measure is given as  𝐺𝑖  =
∑ (∑ 𝑔𝑘(𝑗)𝑓𝑘(. )𝐾

𝑘=1 ) + 𝑐(𝑗)
𝐽
𝑗=1 . Although the 𝑓𝑘(. ) in Model A2 is the same as that in Model 

A1, 𝑔𝑘(𝑗) is generalized in such a way that the weights are free from functional restrictions. 

Model A3 eases the functional restrictions even further such that all parameters in 𝑓𝑘(. ) can 

vary by proximity orders and types of station; thus, 𝑔𝑘(𝑗) has no room to intervene. In both 

extended models, a greater J is associated with more parameters, whereas the number of 

parameters does not go beyond six in Model A1. 

Table 11 describes estimation results for Model A2. The results of the model with J = 4 or more 

are not shown in the table because these maximum likelihood estimates fail to converge. We 

suspect that 𝜏0  and some of 𝜃(𝑗)
0   are no longer statistically different from zero for j = 4, 

preventing the parameters from being identified. 

<< insert Table 11, here >> 

Table 12 shows results for Model A3. We are also unable to estimate the models with J = 4 or 

more. By construction of this model, 𝜏(𝑗)
0   and 𝛼(𝑗)

0   cannot be identified if 𝜏(𝑗)
0   is zero. We 

suspect that 𝜏(4)
0  is close enough to zero. 

<< insert Table 12, here >> 

 

Next, the following two models are examined as extensions of Model B1: 

Model B2 

𝐺𝑖 = ∑ 𝐷𝑖(𝑗)
1 𝜃(𝑗)

1 (𝜏1𝑞𝑖(𝑗) + 𝛼1𝑑𝑖(𝑗)) + 𝐷𝑖(𝑗)
0 𝜃(𝑗)

0 (𝜏0𝑞𝑖(𝑗) + 𝛼0𝑑𝑖(𝑗)) + 𝐷𝑖(𝑗)
0 𝜃(𝑗)

2 𝜔0 + 𝑐(𝑗)
𝐽
𝑗=1   

Model B3 

𝐺𝑖 = ∑ 𝐷𝑖(𝑗)
1 (𝜏(𝑗)

1 𝑞𝑖(𝑗) + 𝛼(𝑗)
1 𝑑𝑖(𝑗)) + 𝐷𝑖(𝑗)

0 (𝜏(𝑗)
0 𝑞𝑖(𝑗) + 𝛼(𝑗)

0 𝑑𝑖(𝑗)) + 𝐷𝑖(𝑗)
0 𝜔(𝑗)

1 + 𝑐(𝑗)
𝐽
𝑗=1   

As with the previous cases, only 𝑔𝑘(𝑗)’s in Model B2 are generalized from Model B1, and 

Model B3 allows all parameters to vary by proximity orders and qualitative characteristics. We 

employ OLS for Model B3, which now turns to be a linear function. Table 13 shows the results 
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for Model B2. In contrast to Model A2, we are able to obtain results for all J from 1 to 9, 

because the parameters are independent of one another in this model. We observe that 𝜏0 and 

𝛼0 are close to zero, as with the results for Model B1. 

<< insert Table 13, here >> 

In [13-5], 𝜃(2)
1  = 0.22 means that the effect of the second closest station with a new line is 22% 

as significant as the effect of the closest station. It turns out that 𝜃𝑖(2)
1  is the only weighting 

parameter with a significant sign. 𝜔(2)
0  = 0.41 implies that the rent is higher by 4,100 yen 

($41) for a housing unit with 𝑑𝑖(2) = 0, 𝑞𝑖(2) = 0 and 𝐷𝑖(2)
1 = 1 compared with the rent of a 

housing unit with 𝑑𝑖(2) = 0, 𝑞𝑖(2) = 0 and 𝐷𝑖(2)
1 = 1. If we assess the rental difference by using 

the mean distance to the second closest station (0.93 mile) and 𝑞𝑖(2) = 1, the rental gap will be 

approximately 1,300 yen ($13). 

The AICc declines as J increases and hits the minimum at J = 5, suggesting that the estimation 

improves by adding the first five closest stations to the model, while adding more than five 

stations does not contribute to a better prediction. On the other hand, the BIC hits the minimum 

at J = 3 and increases as we add more stations to the model, suggesting that only the three 

closest stations should be considered in the model. This is because the BIC penalizes the 

number of parameters more than the AICc does.  

Lastly, we look at the result for Model B3. Table 14 shows variance inflation factors (VIFs) of 

hedonic models using all independent variables, including those in Model B3, for each J from 

1 to 5. Based on the commonly used rule of thumb, where the multicollinearity is considered 

high regarding a variable with a VIF of 10 or greater, it is observed that the multicollinearity 

becomes severe once the third closest stations are added to the model. In particular, distances 

are highly correlated with one another. 

<< insert Table 14, here >> 

Table 15 shows the corresponding estimation results using J = 1 to 5. The shadows of cells 

indicate degrees of VIFs of variables of the corresponding parameters. Although the 

unbiasedness still holds as long as the model is correctly specified, magnitudes of parameters 

for variables with high VIFs should be carefully interpreted.  

Let us first look at the spatial effect of a station with a new line. The marginal effect of the 

number of lines, 𝜏(𝑗)
1 , decreases as the proximity order becomes lower, and the number of lines 

at the third closest station no longer has a significant effect on the rent. However, the fourth 

and fifth closest stations show the same magnitude of effects as the second closest station, 

which is difficult to interpret in the presence of the serious multicollinearity. The marginal 

effect of the distance, 𝛼(𝑗)
1 , is only significant for the closest station.  

Now, we look at the spatial effect of a station without a new line. First, 𝜏(𝑗)
0  are not different 

from zero in all models. The number of lines at a station without a new line does not matter to 

people because they already have access to these lines at closer stations. On the other hand, 

𝛼(𝑗)
0  shows some positive and significant signs for models with J = 2 and 3, while the signs are 

no longer significant after including distances to three stations or more. Lastly, the sign of 𝜔(𝑗)
1  
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is statistically significant only for j = 2. As with previous models, 𝜔(𝑗)
1  needs to be interpreted 

with other parameters by taking into account the distance to the jth closest station. The rental 

difference of housing located in the average distance from the second closest station (0.93 

miles) with and without a new line, having single lines, is approximately 1,800 yen ($23). 

When evaluated at the distance of 0.50 miles (the 10th percentile of the distance to the second 

closest station), the rental difference is approximately 2,400 yen. 

<< insert Table 15, here >> 

Figure 9 compares the AICc and the BIC of the originally proposed models as well as the two 

generalized models. Model B3 is the preferable specification according to AICc, while the BIC 

chooses Model B1 over the other two models. Although the model selection remains an open 

question for the future research, we suggest in general that researchers compare several models 

with different levels of functional flexibility. The advantage of a flexible model, such as Models 

A3 and B3, is in its ability to discern a general idea of what the 𝑔(. ) would look like. However, 

such models come with the cost of high multicollinearity among variables, which hinders us 

from having a valid interpretation of parameters of the proximity measures, and there is a high 

penalty in the information criteria. Once one has some understanding of a general relationship 

between the proximity orders and the weights, one can construct a specific function for 𝑔(. ) to 

have a simplified proximity measure. The significant advantage of such a simplified measure 

is that it allows us to give a clear interpretation of the spatial effect for every site without having 

increasing penalties on information criteria. 

<< insert Figure 6, here >> 
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Table 1.  Proximity measures and implications for the spatial effect of multiple sites 

  Proximity measure 

    

(i) 

Distance to 
the closest 

site 

(ii) 

Number of 
sites within 

a range 

(iii) 

Indicator of 
sites within 

a range 

(iv) 

Traditional 
accessibility 

measure 

General assumptions about the spatial effect of multiple sites 

(A1) 
The closer a site, the greater the 
impact may be. 

○ × × ○ 

(A2) 
The impact may differ by the 
characteristics of the sites. 

○a ○a ○a ○a 

(A3) 
The higher the ranking of proximity of 
a site, the higher the impact may be. 

△b × △b × 

○: The proximity measure addresses the assumption. ×: The proximity measure does not address the 
assumption. ○a : All proximity measures are able to address different impacts of heterogeneous sites by 
introducing distinct parameters and dummy variables. △b : These measures are extreme cases in which no 
weights are assigned to the effects of any sites except the closest one. 
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Table 2.  Assumptions of and potential issues related to proximity variables in the hedonic model 

Proximity variable  Assumptions of the functional forms and issues 

Distance to the closest site 

• Assumption: Only the distance to the closest sites matters. Issue: 
Distances to the second and third closest sites may matter. 

• Potential bias: The effect of the closest site can be overestimated 
because of its positive correlations with the second closest site, the 
third closest site, and so forth. 

Number of sites within a 
range 

• Assumption: Every site within a boundary has the same magnitude 
of spatial effect regardless of distances to the sites. Issue: The effect 
may be greater for a closer site. 

• Assumption: It imposes a clear-cut neighborhood boundary on the 
spatial effect of sites. Issue: The effect may be continuously 
decreasing in distance. 

• Issue: Decision on the construction of boundaries can be arbitrary. 
• Potential bias: The effect of a site near the housing or border within 

the boundary can be underestimated or overestimated. 

Indicator of sites within a 
range 

• Assumption: Whether or not there exists at least one site within a 
boundary is all that matters. The second closest site, the third 
closest site, and so forth, within the boundary have no additional 
effect. Issue: The effect may be greater with a greater number of 
sites within a boundary. 

• Assumption: The closest site within a boundary has a constant 
spatial magnitude effect regardless of the distance to the site. Issue: 
The effect may be greater for a closer site. 

• Issue: Decision on the construction of boundaries can be arbitrary. 
• Potential bias: The effect of a site near the housing or border within 

the boundary can be underestimated or overestimated. 

Traditional accessibility 

• Assumption: Every site has the same importance (weight of the 
spatial effect) regardless of its order of proximity. Issue: People 
may care more about the closest site than the second closest site.  

• Potential bias: The effect of sites with lower order proximity can be 
overestimated because of negative correlations between the order of 
proximity to a site and its significance. 
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Table 3.  Definitions of variables 

Variable Definition 

d(j) Distance (miles) to the jth closest station, s(j) 

q(j) Number of train/subway lines at s(j) 

D1
(j) 

 

New-line dummy, i.e., 1 = if s(j) has a line that does not stop at s(1)… s(j1); 0 = 

otherwise 

D0
(j) 

 
1 = if D1

(j) = 0, i.e., all lines at s(j) stop at either one of s(1)… s(j1); 0 = otherwise 

Rent Rental price per month (10,000 yen per month) 

FSpace Floor space (square foot) 

Bedrooms Number of bedrooms 

FLevel Floor level 

Age Age of the building (year) 

Story Total number of floor levels in a building 

Shop Number of retail stores within 1 mile 

CBD 
 

Distance (miles) to the closest major station: major stations are Shinjuku, 

Ikebukuro, Shibuya, Shinagawa, Tokyo, Ueno, Musashikosugi 

AC 1 = air conditioner equipped; 0 = otherwise 

FL1 1 = unit located on the first floor of the building; 0 = otherwise 

Corner 1 = unit located at a corner of the building; 0 = otherwise 

Propan 1 = propane gas; 0 = otherwise 

IH 1 = stove with induction heating equipment; 0 = otherwise 

AutoLock 1 = building entrance with an autolock system; 0 = otherwise 

Box 1 = apartment with parcel lockers; 0 = otherwise 

Apartment1 1 = standard apartment; 0 = otherwise 

Terraced 1 = terraced house; 0 = otherwise 

Apartment2 1 = luxury apartment; 0 = otherwise 

House 1 = family home; 0 = otherwise 

PC 1 = prestressed concrete; 0 = otherwise 

RC 1 = reinforced concrete; 0 = otherwise 

SRC 1 = steel-reinforced concrete; 0 = otherwise 

Steel 1 = steel; 0 = otherwise 

Wooden 1 = wooden; 0 = otherwise 

Other 1 = none of the above structures; 0 = otherwise 
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Table 4.  Basic statistics (dependent variable, control variables) 

  Variable Mean SE Minimum Maximum 

Dependent variable 
 Rent 8.96 3.58 4.00 26.50 

Independent variable 
 FSpace 30.73 15.23 5.00 145.21 
 Bedrooms 1.34 0.61 1.00 6.00 
 Flevel 2.96 2.42 1.00 38.00 
 Age 16.74 10.87 0.00 45.00 
 Story 4.76 3.67 1.00 99.00 
 Shop 4.16 4.41 0.00 61.00 
 CBD 6.09 3.07 0.00 13.13 
 AC 0.88 0.32 0 1 
 FL1 0.26 0.44 0 1 
 Corner 0.38 0.49 0 1 
 Propan 0.03 0.17 0 1 
 IH 0.06 0.24 0 1 
 AutoLock 0.36 0.48 0 1 
 Box 0.22 0.41 0 1 
 Apartment1 0.34 0.47 0 1 
 Terraced 0.00 0.06 0 1 
 Apartment2 0.66 0.48 0 1 
 House 0.00 0.05 0 1 
 PC 0.00 0.05 0 1 
 RC 0.43 0.49 0 1 
 SRC 0.07 0.26 0 1 
 Others 0.01 0.11 0 1 
 Steel 0.26 0.44 0 1 

  Wooden 0.22 0.42 0 1 
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Table 5.  Basic statistics (distance, number of lines, new-line dummy) 

  Variable Mean SE Minimum Maximum 

Distance: d(j) 
 d(1) 0.56 0.36 0.01 2.62 
 d(2) 0.93 0.43 0.13 3.06 
 d(3) 1.20 0.49 0.26 3.55 
 d(4) 1.42 0.54 0.38 3.69 
 d(5) 1.59 0.56 0.49 3.85 
 d(6) 1.75 0.60 0.52 4.14 
 d(7) 1.89 0.63 0.60 4.42 
 d(8) 2.03 0.66 0.69 4.65 
 d(9) 2.16 0.69 0.82 4.79 

Number of train/subway lines: q(j) 
 q(1) 1.45 0.93 1 10 
 q(2) 1.42 0.97 1 12 
 q(3) 1.38 0.90 1 12 
 q(4) 1.42 0.95 1 12 
 q(5) 1.43 0.93 1 12 
 q(6) 1.46 1.02 1 12 
 q(7) 1.47 1.16 1 12 
 q(8) 1.46 1.15 1 12 
 q(9) 1.49 1.16 1 12 

New-line dummy: D1
(j) 

 D1
(1) 1 0 1 1 

 D1
(2) 0.51 0.50 0 1 

 D1
(3) 0.44 0.50 0 1 

 D1
(4) 0.41 0.49 0 1 

 D1
(5) 0.35 0.48 0 1 

 D1
(6) 0.31 0.46 0 1 

 D1
(7) 0.30 0.46 0 1 

 D1
(8) 0.29 0.45 0 1 

 D1
(9) 0.27 0.44 0 1 
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Table 6.  Model A0: Traditional accessibility measure 

     [6-1] [6-2] [6-3] [6-4] [6-5] 

  J = 1 2 3 5 9 

Parameters in the proximity measure    

 𝜏1 0.39*** 0.34*** 0.29*** 0.24*** 0.26*** 
  (0.05) (0.04) (0.05) (0.05) (0.07) 
 𝛼1 1.52*** 1.92*** 1.71*** 1.54*** 2.24*** 
  (0.19) (0.19) (0.26) (0.37) (0.68) 
 𝜏0  -1.15 0.04 0.03 0.02 
   (2.00) (0.03) (0.02) (0.01) 
 𝛼0  -7.06 0.00 -0.02 -0.06 
   (6.25) (0.37) (0.31) (0.18) 

X     

 FSpace 0.21*** 0.21*** 0.21*** 0.21*** 0.21*** 
  (0.00) (0.00) (0.00) (0.00) (0.00) 
 Bedrooms 0.41*** 0.42*** 0.42*** 0.42*** 0.42*** 
  (0.07) (0.07) (0.07) (0.07) (0.07) 
 FLevel 0.08*** 0.08*** 0.08*** 0.08*** 0.08*** 
  (0.01) (0.01) (0.01) (0.01) (0.01) 
 Age 0.05*** 0.05*** 0.05*** 0.05*** 0.05*** 
  (0.00) (0.00) (0.00) (0.00) (0.00) 
 Story 0.04*** 0.04*** 0.04*** 0.04*** 0.04*** 
  (0.01) (0.01) (0.01) (0.01) (0.01) 
 CBD 0.16*** 0.15*** 0.15*** 0.15*** 0.15*** 
  (0.01) (0.01) (0.01) (0.01) (0.01) 
 AC 0.4*** 0.41*** 0.41*** 0.41*** 0.41*** 
  (0.04) (0.04) (0.04) (0.04) (0.04) 
 FLevel1 0.11*** 0.11*** 0.11*** 0.12*** 0.11*** 
  (0.04) (0.04) (0.04) (0.04) (0.04) 
 Corner 0.06** 0.05* 0.05* 0.05* 0.05* 
  (0.03) (0.03) (0.03) (0.03) (0.03) 
 AutoLock 0.27*** 0.27*** 0.27*** 0.27*** 0.28*** 
  (0.04) (0.04) (0.04) (0.04) (0.04) 
 Box 0.65*** 0.65*** 0.65*** 0.65*** 0.65*** 
  (0.09) (0.09) (0.09) (0.09) (0.09) 

Log likelihood 23,630 23,641 23,658 23,672 23,700 

AICc 47,352 47,379 47,412 47,441 47,497 

BIC 47,700 47,742 47,776 47,804 47,861 

Observations 14,404 14,404 14,404 14,404 14,404 
Dependent variable: Rent ($100/month). Each column shows maximum likelihood estimates using a different 
number of closest stations (J) in the traditional accessibility measure, Model A0. ***, **, and * indicate, 
respectively, 1, 5, and 10% significance levels based on a two-tailed test. Numbers in parentheses are building-
cluster-robust standard errors. Results for municipality fixed effects and the coefficients of building-structure 
dummies (PC, RC, SRC, Others, Steel, Wooden), apartment-type dummies (Apartment1, Terraced, Apartment2, 
House), and three variables that do not have significant effects (Shop, Propan and IH) are not shown in the 
table. 
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Table 7.  Model B0 

 [7-1] [7-2] [7-3] [7-4] [7-5] 

J = 1 2 3 5 9 

𝜏1 0.16*** 0.10*** 0.07*** 0.06*** 0.04*** 
 (0.02) (0.01) (0.01) (0.01) (0.01) 

𝛼1 0.48*** 0.29*** 0.17*** 0.09*** 0.03*** 
 (0.09) (0.04) (0.04) (0.02) (0.02) 

𝜏0  0.15*** 0.13*** 0.06*** 0.04** 
  (0.05) (0.04) (0.02) (0.02) 

𝛼0  0.16 0.03 0.03 0.00 
  (0.15) (0.05) (0.04) (0.01) 

𝜔0  0.48*** 0.29*** 0.14** 0.02 
  (0.11) (0.08) (0.06) (0.04) 

R2 0.8788 0.8787 0.8776 0.8772 0.8766 

Log likelihood 23,607 23,612 23,675 23,699 23,736 

AICc 47,307 47,323 47,449 47,496 47,569 

BIC 47,655 47,694 47,820 47,867 47,940 

Observations 14,404 14,404 14,404 14,404 14,404 

Dependent variable: Rent ($100/month). Each column shows ordinary least squares estimates using a different 
number of closest stations (J) in Model B0. ***, **, and * indicate, respectively, 1, 5, and 10% significance 
levels based on a two-tailed test. Numbers in parentheses are building-cluster-robust standard errors. Results for 
municipality fixed effects and the coefficients of control variables, X, are not shown in the table. 
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Table 8.  Model A1 

  [8-1] [8-2] [8-3] [8-4] [8-5] 

J = 1 2 3 5 9 

𝜏1 0.39*** 0.42*** 0.43*** 0.44*** 0.43*** 
 (0.05) (0.04) (0.04) (0.04) (0.04) 

𝛼1 -1.52*** -1.53*** -1.49*** -1.43*** -1.43*** 
 (0.19) (0.16) (0.16) (0.15) (0.17) 

𝜏0  -0.79* -0.41 -0.24 -0.32 
  (0.41) (0.55) (0.24) (0.22) 

𝛼0  -3.36*** -2.16 -1.57** -1.92*** 
  (0.65) (2.00) (0.70) (0.50) 

𝜃1  -2.27*** -2.23*** -1.79*** -1.82*** 
  (0.82) (0.68) (0.52) (0.56) 

𝜃0   -0.49 0.07 -0.42 
     (2.46) (0.51) (0.39) 

Log likelihood 23,630 23,606 23,603 23,596 23,598 

AICc 47,352 47,310 47,306 47,292 47,296 

BIC 47,307 47,230 47,208 47,198 47,200 

Observations 14,404 14,404 14,404 14,404 14,404 

Dependent variable: Rent ($100/month). Each column shows maximum likelihood estimates using a different 
number of closest stations (J) in Model A1. ***, **, and * indicate, respectively, 1, 5, and 10% significance 
levels based on a two-tailed test. Numbers in parentheses are building-cluster-robust standard errors. Results for 
municipality fixed effects and the coefficients of control variables, X, are not shown in the table. 
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Table 9.  Model B1 

  [9-1] [9-2] [9-3] [9-4] [9-5] 

J = 1 2 3 5 9 

𝜏1 0.16*** 0.16*** 0.18*** 0.19*** 0.19*** 
 (0.02) (0.02) (0.02) (0.02) (0.02) 

𝛼1 0.48*** 0.52*** 0.56*** 0.57*** 0.55*** 
 (0.09) (0.08) (0.07) (0.11) (0.14) 

𝜏0  0.06 0.03 0.01 0.02 
  (0.05) (0.05) (0.07) (0.06) 

𝛼0  0.30** 0.29** 0.24 0.28 
  (0.14) (0.14) (0.24) (0.23) 

𝜔0  0.45*** 0.43*** 0.40* 0.45** 

  (0.11) (0.12) (0.22) (0.19) 

𝜃1  2.77*** 3.22*** 2.57*** 2.62*** 
  (0.88) (0.78) (0.59) (0.68) 

𝜃0   2.48 1.10 1.99 
   (1.99) (2.17) (3.12) 

𝜃2   1.14 0.71 1.18 
     (0.70) (1.10) (1.03) 

Log likelihood 23,607 23,565 23,552 23,547 23,548 

AICc 47,307 47,230 47,208 47,198 47,200 

BIC 47,655 47,609 47,601 47,591 47,594 

Observations 14,404 14,404 14,404 14,404 14,404 

Dependent variable: Rent ($100/month). Each column shows maximum likelihood estimates using a different 
number of closest stations (J) in Model B1. ***, **, and * indicate, respectively, 1, 5, and 10% significance 
levels based on a two-tailed test. Numbers in parentheses are building-cluster-robust standard errors. Results for 
municipality fixed effects and the coefficients of control variables, X, are not shown in the table. 
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Table 10.  Previous literature studies using accessibility measures in the hedonic approach 

[1] [2] [3] [4] [5] [6] [7] [8] 

Paper 

 

Study area 

(years of data) 

Accessibility measure 

 

Bdy 

 

Distance 

(zone) 

𝑞𝑧 

 
Sample 

(zones) 

Mth 

 

Adair et al. 

(2000) 

Belfast Urban Area 

(1996) 

∑ 𝜏(𝑞𝑧/𝑄𝑧)𝑒𝛼𝑑𝑖𝑧
𝑧   *4 ZtoZ 

(TAZ) 

People 2,648 

(182) 

given 

Ahlfeldt 

(2011) 

Berlin, Germany 

(2000–2008) 

𝜏 log ∑ 𝑞𝑧𝑒𝛼𝑑𝑖𝑧
𝑧   C ZtoZ 

(VP) 

Worker 33,843 

(1,201) 

GS 

Ahlfeldt and 

Wendland 

(2010) 

Berlin, Germany 

(1881–1936) 

∑ 𝜏𝑞𝑧𝑒𝛼𝑑𝑖𝑧
𝑧   C ZtoZ 

(CP) 

LV 1,470 

(1,470) 

NLS 

Franklin and 

Waddell 

(2003) 

King County, WA 

(1995–1998) 

∑ 𝜏𝑞𝑧𝑒𝛼𝑑𝑖𝑧
𝑧   *3 ZtoZ 

(TAZ) 

C/E/I 41,600 

(938) 

GS 

Giuliano et al. 

(2010) 

Los Angeles, CA ∑ 𝜏𝑞𝑧𝑒𝛼𝑑𝑖𝑧
𝑧   C ZtoZ 

(TAZ) 

Job 22,552 

(308) 

given 

Lin and Cheng 

(2016) 

Taipei, Taiwan 

(2009) 
𝜏𝑚 log ∑

𝑞𝑧𝑑𝑚,𝑖𝑧
𝛾

𝑒
𝛼𝑑𝑚,𝑖𝑧

∑ ∑ 𝜏𝑚𝑞𝑧𝑑
𝑚,𝑖𝑧
𝛾

𝑒
𝛼𝑑𝑚,𝑖𝑧

𝑚𝑧
𝑧   

C ZtoZ 

(district) 

Worker 7,077 

(41) 

given 

McArthur et al. 

(2012) 

Southwest Norway 𝜏 log ∑ 𝑞𝑧
𝛾

𝑒𝛼𝑑𝑖𝑧
𝑧   C ZtoZ 

(zip code) 

Job 4,479 

(153) 

ML 

Osland and 

Thorsen (2008) 

Southwest Norway 

(1997–2001) 

𝜏 log ∑ 𝑞𝑧𝑒𝛼𝑑𝑖𝑧
𝑧 ,  

𝜏 log ∑ 𝑞𝑧
𝛾

𝑒𝛼𝑑𝑖𝑧
𝑧 ,  

𝜏 log ∑ (𝑞𝑧/𝑄𝑧)𝑑𝑖𝑧𝑧 ,  

𝜏 log ∑ 𝑞𝑧
𝛾

𝑑𝑖𝑧
𝜎

𝑧 , 

C ZtoZ 

(zip code) 

EO 2,788 

(98) 

ML 

Osland (2010) Southwest Norway 

(1997–2002) 

∑ 𝜏[𝑞𝑧
1exp (𝛼1𝑑𝑖𝑧/ℎ)  +𝑧

𝑞𝑧
2exp (𝛼2𝑑𝑖𝑧/ℎ)]ℎ  

C ZtoZ 

(zip code) 

Worker 1,691 

(55) 

ML 

Osland and 

Pryce (2012) 

Glasgow, Scotland 

(2007) 

∑ 𝜏𝑞𝑧
𝛾

𝑑𝑖𝑧
𝜎 𝑒𝛼𝑑𝑖𝑧

𝑧   *1 PtoZ Worker 6,269 

(6,501) 

GS 

Osland et al. 

(2016) 

Southwest Norway 

(1997-2007) 

∑ 𝜏𝑞𝑧𝑒𝛼𝑑𝑖𝑧
𝑧   C 

*2 

ZtoZ 

(zip code) 

EO 7,180 

(98) 

*5 

Wang and 

Minor (2002) 

Cleveland, OH 

(1980–2000) 

∑ 𝜏(𝑞𝑧/𝑄𝑧)𝑑𝑖𝑧
𝜎

𝑧   C ZtoZ 

(CT) 

Job 193 

(193) 

given 

[1] Paper, [2] Study area and years of data, [3] Accessibility measure: 𝑑𝑖𝑧  = distance from housing i to zone z, 𝑞𝑧= 

value of attractiveness of zone z, 𝑄𝑧 = ∑ 𝑞𝑧𝑧 , parameters = 𝜏, 𝛼, 𝛾, 𝜎, ℎ, [4] Boundary condition: C = censored by 

study area, *1 = includes extra 60 km, *2 = the authors argue that the study area is surrounded by natural barriers 

that create a delimitation to other areas, *3 = includes Puget Sound region, *4 = includes 36 extra zones, [5] 

Distance calculations and zone type: ZtoZ = zone-to-zone, PtoZ = point-to-zone, TAZ = traffic analysis zone, VP 

= voting precincts, CP = commercial post defined in Bruno Aust (1986), CT = census track [6] 𝑞𝑧  (value of 



34 

 

attractiveness in zone z): EO = the number of employment opportunities, Worker = the number of workers, Job = 

the number of jobs, C/E/I = the number of commercial, educational, industrial employment opportunities, LV = 

land value, People = the number of people commuting from zone i to zone s, 𝑄𝑧  = attractiveness/access measures 

of zone s from other areas, [7] Sample size and the number of zones in the study area, [8] Estimation method: ML 

= maximum likelihood, NL = nonlinear least squares, GS = grid search, given = conducting ordinary least squares 

with pre-estimated accessibility parameters. *5 = the paper does not explain how 𝛼  is obtained, while it 

presumably applies the same method as in Osland and Thorsen (2008). 

  



35 

 

Table 11.  Model A2 

  [11-1] [11-2] [11-3] 

J = 1 2 3 

𝜏1 0.39*** 0.39*** 0.4*** 
 (0.05) (0.05) (0.05) 

𝛼1 1.52*** 1.59*** 1.47*** 
 (0.19) (0.17) (0.19) 

𝜏0  0.03 0.00 
  (0.02) (0.00) 

𝛼0  0.83*** 3.44*** 
  (0.20) (1.08) 

𝜃1
(2) 

 0.23** 0.15*** 
  (0.10) (0.06) 

𝜃1
(3) 

  0.10** 
   (0.05) 

𝜃0
(3) 

  0.92*** 
   (0.10) 

Log likelihood 23,630 23,612 23,604 

AICc 47,352 47,323 47,309 

BIC 47,700 47,694 47,695 

Observations 14,404 14,404 14,404 

Dependent variable: Rent ($100/month). Each column shows maximum likelihood estimates using a different 
number of closest stations (J) in Model A2. ***, **, and * indicate, respectively, 1, 5, and 10% significance 
levels based on a two-tailed test. Numbers in parentheses are building-cluster-robust standard errors. Results for 
municipality fixed effects and the coefficients of control variables, X, are not shown in the table. 
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Table 12.  Model A3 

  [12-1] [12-2] [12-3] 

J = 1 2 3 

𝜏1
(1) 0.39*** 0.42*** 0.44*** 
 (0.05) (0.04) (0.04) 

𝜏1
(2) 

 0.08 0.08 
  (0.06) (0.05) 

𝜏1
(3) 

  0.01 
   (0.02) 

𝛼1
(1) -1.52*** -1.53*** -1.47*** 
 (0.19) (0.16) (0.17) 

𝛼1
(2) 

 -1.48** -1.27* 
  (0.70) (0.66) 

𝛼1
(3) 

  0.21 
   (0.29) 

𝜏0
(2) 

 -0.79** -0.70** 
  (0.4) (0.34) 

𝜏0
(3) 

  -0.03 
   (0.06) 

𝛼0
(2) 

 -3.36*** -2.82*** 
  (0.65) (0.52) 

𝛼0
(3) 

  0.79 
   (0.95) 

Log likelihood 23,630 23,606 23,586 

AICc 47,352 47,311 47,281 

BIC 47,700 47,690 47,690 

Observations 14,404 14,404 14,404 

Dependent variable: Rent ($100/month). Each column shows maximum likelihood estimates using a different 
number of closest stations (J) in Model A3. ***, **, and * indicate, respectively, 1, 5, and 10% significance 
levels based on a two-tailed test. Numbers in parentheses are building-cluster-robust standard errors. Results for 
municipality fixed effects and the coefficients of control variables, X, are not shown in the table. 
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Table 13.  Model B2 

  [13-1] [13-2] [13-3] [13-4]   [13-5] 

J = 1 2 3 5  9 

𝜏1 0.16*** 0.16*** 0.17*** 0.19***   0.18***       
 (0.02) (0.02) (0.02) (0.02)  (0.03)    

𝛼1 0.48*** 0.52*** 0.58*** 0.59***  0.59***    

 (0.09) (0.08) (0.08) (0.08)  (0.07)    

𝜏0  0.06 0.01 -0.01  0.03    

  (0.05) (0.05) (0.05)  (0.11)    

𝛼0  0.30** 0.23* 0.23  0.20    

  (0.14) (0.13) (0.15)  (0.16)    

𝜃1
(2)   0.15* 0.19** 0.22***   0.22***   𝜃1

(6) 0.03 
  (0.09) (0.08) (0.08)  (0.08)   (0.11) 

𝜃1
(3) 

  0.16 0.10  0.10  𝜃1
(7) 0.02 

   (0.10) (0.10)  (0.11)   (0.08) 

𝜃1
(4) 

   0.08  0.07  𝜃1
(8) 0.11 

    (0.08)  (0.13)   (0.12) 

𝜃1
(5) 

   0.07  0.11  𝜃1
(9) 0.01 

    (0.13)  (0.15)   (0.1) 

𝜃0
(3)     0.58 0.57   0.52   𝜃0

(6) 0.12 
   (0.53) (0.49)  (0.46)   (0.42) 

𝜃0
(4) 

   0.19  0.16  𝜃0
(7) 0.06 

    (0.34)  (0.49)   (0.38) 

𝜃0
(5) 

   0.43  0.17  𝜃0
(8) 0.24 

    (0.56)  (0.72)   (0.41) 
        𝜃0

(9) 0.33 
         (0.72) 

𝜔0
(2)   0.45*** 0.4*** 0.38***   0.41***   𝜔0

(6) 0.02 
  (0.11) (0.12) (0.13)  (0.13)   (0.15) 

𝜔0
(3) 

  0.22*** 0.24***  0.24**  𝜔0
(7) 0.01 

   (0.08) (0.09)  (0.09)   (0.14) 

𝜔0
(4) 

   -0.12  -0.12  𝜔0
(8) 0.09 

    (0.10)  (0.12)   (0.16) 

𝜔0
(5) 

   0.24**  -0.19  𝜔0
(9) 0.12 

    (0.09)  (0.19)   (0.23) 

Log likelihood 23,607 23,565 23,546 23,533  23,523 

AICc 47,307 47,230 47,198 47,185  47,190 

BIC 47,655 47,609 47,599 47,631  47,727 

Observations 14,404 14,404 14,404 14,404  14,404 

Dependent variable: Rent ($100/month). Each column shows maximum likelihood estimates using a different 
number of closest stations (J) in Model B2. ***, **, and * indicate, respectively, 1, 5, and 10% significance 
levels based on a two-tailed test. Numbers in parentheses are building-cluster-robust standard errors. Results for 
municipality fixed effects and coefficients of the control variables, X, are not shown in the table.
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Table 14.  Variance inflation factors (VIFs) in Model B3 

[14-1] [14-2] [14-3] [14-4] [14-5] 

Variable VIF Variable VIF Variable VIF Variable VIF Variable VIF 

D1
(1)×d(1) 3.44 D1

(2)×q(2) 3.08 D1
(2)×q(2) 3.12 D1

(2)×q(2) 3.17 D1
(2)×q(2) 3.19 

D1
(1)×q(1) 4.13 D1

(1)×q(1) 4.30 D1
(3)×q(3) 3.26 D1

(4)×q(4) 3.28 D1
(3)×q(3) 3.29 

  D1
(1)×d(1) 7.11 D1

(1)×q(1) 4.68 D1
(3)×q(3) 3.28 D1

(4)×q(4) 3.32 
  D0

(2)×q(2) 8.24 D1
(1)×d(1) 7.21 D1

(1)×q(1) 4.79 D1
(5)×q(5) 3.49 

  D0
(2)×d(2) 9.40 D0

(3)×q(3) 8.26 D1
(1)×d(1) 7.32 D1

(1)×q(1) 4.82 
  D1

(2)×d(2) 9.99 D0
(2)×q(2) 8.84 D0

(3)×q(3) 8.68 D1
(1)×d(1) 7.38 

  D0
(2) 16.07 D1

(2)×d(2) 16.42 D0
(4)×q(4) 9.07 D0

(5)×q(5) 7.79 
    D0

(2)×d(2) 17.58 D0
(2)×q(2) 9.34 D0

(3)×q(3) 8.97 
    D0

(2) 17.76 D1
(2)×d(2) 16.46 D0

(4)×q(4) 9.23 
    D1

(3)×d(3) 18.48 D0
(2)×d(2) 18.06 D0

(2)×q(2) 9.72 
    D0

(3) 18.55 D0
(2) 19.02 D1

(2)×d(2) 16.68 
    D0

(3)×d(3) 21.33 D0
(3) 19.34 D0

(2)×d(2) 18.15 
      D0

(4) 20.08 D0
(5) 19.14 

      D1
(4)×d(4) 33.11 D0

(3) 19.74 
      D1

(3)×d(3) 33.83 D0
(2) 19.87 

      D0
(4)×d(4) 41.71 D0

(4) 20.61 
      D0

(3)×d(3) 42.69 D1
(3)×d(3) 34.10 

        D0
(3)×d(3) 43.88 

        D1
(5)×d(5) 55.32 

        D1
(4)×d(4) 67.25 

        D0
(4)×d(4) 92.15 

                D0
(5)×d(5) 94.97 

Mean VIF 5.08 Mean VIF 6.08 Mean VIF 7.82 Mean VIF 10.65 Mean VIF 15.61 
  5 < VIF <10 10 < VIF < 20 20 < VIF < 50 50 < VIF 
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Table 15.  Model B3 

  [15-1] [15-2] [15-3] [15-4] [15-5] 

J = 1 2 3 4 5 

𝜏1
(1) 0.16*** 0.16*** 0.17*** 0.18*** 0.18*** 
 (0.02) (0.02) (0.02) (0.02) (0.02) 

𝜏1
(2) 

 0.04** 0.04** 0.04** 0.04** 
  (0.02) (0.02) (0.02) (0.02) 

𝜏1
(3) 

  0.00 0.01 0.01 
   (0.02) (0.02) (0.02) 

𝜏1
(4) 

   0.05*** 0.05*** 
    (0.02) (0.02) 

𝜏1
(5) 

    0.04* 
     (0.02) 

𝛼1
(1) 0.48*** 0.56*** 0.59*** 0.59*** 0.6*** 
 (0.09) (0.08) (0.07) (0.07) (0.07) 

𝛼1
(2) 

 0.01 0.15 0.15 0.15 
  (0.07) (0.09) (0.09) (0.09) 

𝛼1
(3) 

  0.22** 0.13 0.13 
   (0.09) (0.10) (0.11) 

𝛼1
(4) 

   0.13 0.15 
    (0.10) (0.12) 

𝛼1
(5) 

    0.10 
     (0.15) 

𝜏0
(2) 

 0.06 0.03 0.03 0.03 
  (0.05) (0.05) (0.05) (0.05) 

𝜏0
(3) 

  0.01 0.01 0.01 
   (0.05) (0.05) (0.05) 

𝜏0
(4) 

   0.03 0.03 
    (0.05) (0.05) 

𝜏0
(5) 

    0.04 
         (0.04) 

Continued on the following page... 
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 …continued from the previous page (Table 15.) 

  [15-1] [15-2] [15-3] [15-4] [15-5] 

J = 1 2 3 4 5 

𝛼0
(2) 

 0.33** 0.17 0.15 0.17 
  (0.14) (0.17) (0.17) (0.18) 

𝛼0
(3) 

  0.2** 0.11 0.12 
   (0.09) (0.09) (0.10) 

𝛼0
(4) 

   0.12 0.17 
    (0.09) (0.12) 

𝛼0
(5) 

    0.02 
     (0.13) 

𝜔1
(2) 

 0.39*** 0.39*** 0.38*** 0.38*** 
  (0.12) (0.11) (0.12) (0.12) 

𝜔1
(3) 

  0.07 0.06 0.08 
   (0.12) (0.12) (0.12) 

𝜔1
(4) 

   0.04 0.03 
    (0.12) (0.12) 

𝜔1
(5) 

    0.04 
         (0.14) 

R2 0.8788 0.8795 0.8799 0.8801 0.8803 

Log likelihood 23,607 23,563 23,540 23,530 23,519 

AICc 47,307 47,229 47,193 47,170 47,164 

BIC 47,655 47,615 47,617 47,670 47,814 

Observations 14,404 14,404 14,404 14,404 14,404 
 5 < VIF <10 10 < VIF < 20 20 < VIF < 50 50 < VIF 

Dependent variable: Rent ($100/month). Each column shows maximum likelihood estimates using a different 
number of closest stations (J) in Model B3. ***, **, and * indicate, respectively, 1, 5, and 10% significance levels 
based on a two-tailed test. Numbers in parentheses are building-cluster-robust standard errors. Results for 
municipality fixed effects and coefficients of the control variables, X, are not shown in the table. VIF: Variance 
Inflation Factor. 
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Figure 1.  Train and subway stations around Tokyo’s 23 wards in 2011. 
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Figure 2.  Quantitative (q) and qualitative (D1) characteristics 

 

 
𝑠𝑖(𝑗) indicates the jth closest station from housing i. q is the number of lines and D1 is a new-line dummy. The 

closest station, 𝑠𝑖(1), has one line, i.e., q = 1, and it is the closest station from housing i to take the line, i.e., D1 

= 1. The second closest station, 𝑠𝑖(2), also has one line, i.e., q=1, while this line leads to the closer station, 

which is 𝑠𝑖(1), i.e., D1 = 0; in other words, the resident of housing i can go to 𝑠𝑖(1) to take the line instead of 

going to 𝑠𝑖(2). The new-line dummy for the third closest station 𝑠𝑖(3) is one because it is the closest station 

from housing i to take the line that leads to the station. On the other hand, the new-line dummy for the sixth 

closest station, 𝑠𝑖(6), is zero because the resident can go to closer stations, 𝑠𝑖(3) and 𝑠𝑖(4), to take all lines that 

lead to the station. 
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Figure 3.  Model A1  

 

 
This figure illustrates 𝑔𝑘(𝑗)𝑓𝑘(. ) in Model A1 with respect to distance, based on the result in [9-4] of Table 9. 

The quantitative value q(j), i.e., the number of lines, is fixed at one. Each line is drawn between the 10th 

percentile and the 90th percentile of distances to stations with a corresponding proximity order. Note that the 

levels of 𝑔𝑘(𝑗)𝑓𝑘(. ) illustrated in this figure are not comparable between different proximity orders because 

c(j)s are not included in these measures. D1
(1) is the closest station, D1

(2) is the second closest station with a new 

line, D1
(3) is the third closest station with a new line, D0

(2) is the second closest station without a new line, and 

D0
(3) is the third closest station without a new line. 

 

  

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

(1
0

,0
0

0
 y

en
 p

er
 m

o
n

th
)

(mile)

gk(j) fk(d(j), q(j))

D1(1)

D1(2)

D1(3)

D0(2)

D0(3)



44 

 

Figure 4.  Model B1  
 

 
This figure illustrates 𝑔𝑘(𝑗)𝑓𝑘(. ) in Model B1 with respect to distance, based on the result in [10-4] of Table 

10. The quantitative value q(j), i.e., the number of lines, is fixed to one. Each line is drawn between the 10th 

percentile and the 90th percentile of distances to stations with a corresponding proximity order. Note that the 

levels of 𝑔𝑘(𝑗)𝑓𝑘(. ) illustrated in this figure are not comparable between different proximity orders because 

c(j)s are not included in these measures. D1
(1) is the closest station, D1

(2) is the second closest station with a new 

line, D1
(3) is the third closest station with a new line, D0

(2) is the second closest station without a new line, and 

D0
(3) is the third closest station without a new line. 
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Figure 5.  Akaike and Bayesian information criteria. 
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Figure 6.  Akaike and Bayesian information criteria. (Appendix 2) 
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