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Abstract

While the cap-and-trade program was originally proposed as a static regulation, its

implementation introduces dynamic incentives such as saving (banking) of emissions per-

mits. I examine the performance of the program by accounting for dynamic regulatory

design and firms’ incentives in the context of the US Acid Rain Program. I develop and

estimate a dynamic equilibrium model of abatement investment and permit trading and

banking, subject to transaction costs. Simulations reveal that although permit banking

improves the cost-efficiency, the aggregate level of banking is excess due to transaction

costs. Distribution of emissions would be more dispersed in the first best.
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1 Introduction

Achieving environmental sustainability without compromising economic efficiency is a central

question in policy debates and the economics literature. The traditional approach adopted

by policymakers is command-and-control regulation. However, economists advocate market-

based approaches that provide incentives to reduce emissions through a market mechanism.

The cap-and-trade program, or emissions trading program, is one such example. Regulated

firms are allowed to trade emissions permits in order to achieve a target level of aggregate

emissions in a flexible way. The idea of cap-and-trade was originally proposed in the seminal

work of Coase (1960), then formalized by Montgomery (1972). Such schemes are now widely

adopted, including in the air pollution regulations of the United States and in greenhouse

gas regulations in the European Union.

While these seminal works consider cap-and-trade regulation as a static regulatory frame-

work, its implementation has dynamic aspects. A cap-and-trade program spans multiple peri-

ods, and the regulatory standard is typically rising over time (i.e., emissions cap is decreasing).

Moreover, the regulator often allows for the intertemporal reallocation of emissions permits,

namely saving of emissions permits. Although these dynamic features prevail in many cap-

and-trade programs, empirical studies in the literature focus mainly on static decisions in the

steady state (see, e.g., Carlson et al. 2000, Fowlie 2010b, and Chan 2015).

The dynamic nature of the regulation affects firms’ behavior and thus the consequence

of the regulation. In particular, permit banking exhibits a tradeoff in efficiency. On the one

hand, regulated firms can smooth abatement costs through permit banking, improving in-

tertemporal efficiency. Theoretical studies of the cap-and-trade (e.g., Rubin, 1996) emphasize

this effect in a frictionless environment. However, permit banking can lower firms’ incentive

to trade (especially sell) permits, hindering efficient reallocation of permits through the mar-

ket mechanism. This channel could be important in a setting where the Coase theorem is

unlikely to hold.

The goal of this study is to propose an empirical framework that evaluates the performance

of the cap-and-trade program by accounting for the dynamic nature of the regulatory design

and the forward-looking incentives of regulated firms. To do so, I develop and estimate a new

model of abatement investment and permit market equilibrium in a dynamic setting. I apply

the model to evaluate the US Acid Rain Program, a federal cap-and-trade program designed

to reduce sulfur dioxide emissions from power plants. Using counterfactual simulations based

on the estimated model, I examine the consequences of the Acid Rain Program, emphasizing

the dynamic aspects of firms’ behavior and regulatory design.

In a cap-and-trade program, regulated firms must surrender emissions permits to offset

their actual emissions. To meet this regulatory requirement, firms face a sort of “make-

or-buy” decision problem: reduce emissions or trade (buy) emissions permits. Dynamic

incentives matter in both decisions. Investment in clean, but costly technology is an important

margin for reducing emissions. The trading of emissions permits is also a forward-looking
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decision, because firms can save (bank) emissions permits across periods.

Motivated by these considerations, I construct a dynamic equilibrium model in which

price-taking firms make decisions on abatement investment and the trading (and banking) of

emissions permits. Equilibrium permit prices are determined by market clearing conditions,

which also determine how firms comply with the regulation in an equilibrium. In addition,

the model incorporates two important factors that determine how the market mechanism

affect the performance of a cap-and-trade program.

First, the model allows for rich observed firm heterogeneity in terms of abatement costs

and the initial allocation of emissions permits. Firm heterogeneity is why the trading of emis-

sions permits occurs. Trading leads to a reallocation of emissions permits and achieves a more

efficient distribution of emissions. However, incorporating heterogeneity in a dynamic equi-

librium framework can be computationally intensive. To circumvent this issue, I introduce a

simple econometric strategy that avoids computation of dynamic competitive equilibrium in

estimation. This strategy is based on the literature on the estimation of dynamic structural

models.

In addition, I incorporate the transaction costs of permit trading as a wedge in the permit

market. Given that no centralized trading exchanges exist for many cap-and-trade programs,

how well the permit market works is an empirical question. Transaction costs capture the

wedge between the market price and the firm-level shadow value of permits, which affects

those firms’ investment and trading decisions. The transaction costs also play an important

role in modeling dynamics. A theoretical study by Rubin (1996) shows that, without any

frictions in the permit market, every firm should have the same shadow value of permits,

given by the market price. Furthermore, the equilibrium permit price should increase at

the inverse of the interest rate (i.e., Hotelling rule). This places a strong restriction on an

empirical analysis. By including transaction costs, a firm’s shadow value of emissions permits

is determined endogenously.

Stavins (1995) was the first theoretical study to investigate how transaction costs discour-

age permit trading and lead to inefficient outcomes in a static setting. Concerns related to

transaction costs have been pointed out in practice. Previous studies document that many

firms tend not to trade emissions permits, and instead comply with the regulation using their

allocated permits (see, e.g., Jaraitė-Kažukauskė and Kažukauskas, 2015 for the EU Emis-

sions Trading Scheme). I introduce two types of transaction costs: (1) a sunk cost associated

with participation (entry) in the permit market, and (2) variable costs that depend on the

trading volume. I argue that these costs can be identified from a firm’s optimal decisions. I

structurally estimate the costs using the proposed model in my empirical analysis.

I apply my empirical framework to study the first nine years (1995–2003) of the US Acid

Rain Program, a cap-and-trade program for sulfur dioxide (SO2) emissions that targets the

US electricity industry.1 The aim of the Acid Rain Program is to reduce the aggregate SO2

1I terminate my analysis in 2003 because of the proposal of the Clean Air Interstate Rule in December
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emissions from coal power plants to half of their 1980 levels. The regulator distributed emis-

sions permits to existing generation facilities, and these facilities were required to surrender

sufficient permits to offset their emissions each year.2 Regulated sources could choose how

to comply with the regulation. For example, they could switch to a cleaner coal, invest in

abatement equipment, or obtain additional permits from the market. Rich data on produc-

tion and abatement by power plants and the trading of emissions permits are available from

this program.

The Acid Rain Program is an interesting example of a cap-and-trade program in which

dynamic incentives play an important role in compliance decisions. Before the regulation

was implemented in 1995, in 1990, the US EPA (regulator) announced the permit allocation

schedule. The schedule is generous in the first five years of the regulation (1995–1999, called

Phase I) and then decreases by almost half in the period after 2000 (Phase II). Casual

observation suggests that firms took this schedule into account, banking a significant number

of permits in the first five years, and then using them once the cap became tighter after 2000.

While this observation suggests the importance of banking in firms’ compliance strategies,

some are concerned about the excessive banking of permits (e.g., Smith et al., 1998). My

framework analyzes how such dynamic incentives affect firms’ compliance decisions and the

performance of the program.

An econometric analysis poses a challenge in terms of computation. My model belongs

to a class of models that feature a dynamic competitive equilibrium with multiple hetero-

geneous firms. A full solution approach (i.e., solving a dynamic competitive equilibrium for

each evaluation of the model parameters) is computationally prohibitive. To circumvent the

computation costs, I use the observed permit prices as a sequence of equilibrium prices, and

avoid solving equilibrium permit prices in the estimation. This trick is similar in spirit to

the two-step estimators in dynamic Markov games, such as that in Aguirregabiria and Mira

(2007). Because each firm faces a different optimization problem, owing to the firm hetero-

geneity, this approach reduces the computation costs in the estimation significantly.3 I match

the model predictions with the data to construct the least squares criterion function.

The estimates of my model parameters imply that the variable transaction costs from

permit trading are substantial. The median of the marginal transaction cost is estimated to

be USD 36, whereas the permit prices range between USD 100 and 200 in the sample period.

This result suggests that the dispersion of the shadow value of emissions across firms is large

and thus the distribution of emissions may not be efficient.

2003, which had a major impact on the regulatory environment for SO2 emissions. See Section 2.2 for details.
2Emissions permits are called emissions “allowances” in the Acid Rain Program because the term “permit”

has another meaning in US environmental law. Because “permit” is the standard terminology in the economics
literature, I use the term “permit” in this paper.

3The two-step approach used to estimate single-agent dynamic models (e.g., Hotz and Miller 1993; Aguir-
regabiria and Mira 2002) is not suitable in my setting because firms are heterogeneous in many dimensions,
such as permit allocation, characteristics of power plants, and fuel costs. Given that many covariates affect
optimal decisions, estimating policy functions from the data in a flexible way is quite difficult.
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Using the estimated model, I conduct two counterfactual exercises to investigate the

performance of the regulation. In my first counterfactual experiment, I examine the effect

of introducing a centralized trading platform that eliminates all transaction costs. This

simulation quantifies the first-best outcome under the cap-and-trade. While previous works,

including Carlson et al. (2000) and Gollop and Roberts (1985), conduct such an exercise in

a static framework, my analysis focuses on dynamic decisions such as abatement investment

and permit banking.4 I find that the centralized platform would lead to a more dispersed

distribution of emissions and investment, and less banking of emissions permits. These effects

reflect more active trading of emissions permits. The average abatement costs would decrease

by 18% under the centralized platform, implying that “unrealized” gains from trade are

significant in my sample period.

In the second counterfactual experiment, I examine the equilibrium outcome when permit

banking between Phase I and II is not allowed. I find more active trading of emissions permits

in the absence of permit banking. Although active trading could lead to a more efficient

allocation of emissions in the cross-sectional sense, permit banking allows for the smoothing

of abatement costs across periods. In my simulation result, the latter effect dominates the

former, with permit banking reducing the average abatement costs by 2.8%.

The paper proceeds as follows. I first briefly review the related literature. Section 2

provides some background on the Acid Rain Program and a descriptive analysis of the data.

Motivated by the descriptive findings, I introduce the model in Section 3. I then present

the estimation methodologies and the results of the model in Sections 4 and 5, respectively.

Section 6 presents the counterfactual experiments, through which I evaluate the consequences

of the Acid Rain Program. Section 7 concludes the paper.

Related Literature My study is related to three strands of literature. First, my study

contributes to the empirical literature on dynamic investment behavior (see, e.g., Ericson and

Pakes, 1995, Bajari et al., 2007, Ryan, 2012, Collard-Wexler, 2013, and Kalouptsidi, 2014 in

an oligopolistic setting, and Rust, 1987 and Aguirregabiria and Mira, 2002 in a competitive

setting). My empirical setting is unique in that the investment in technology is substitutable

with other production inputs, namely emissions permits. With frictions in the permit market,

firms’ decisions are cast as a make-or-buy problem in a dynamic setting. Though my model

is tailored to cap-and-trade regulation, the model can be used to analyze firms’ dynamic

incentives when they are subject to frictions or imperfections in input markets. The model

also can be applied to other market-based environmental regulations, such as the CAFE

credit trading program and green certificate trading in the Renewable Portfolio Standard.

My study is also related to the empirical literature on cap-and-trade programs. Much of

4Carlson et al. (2000) and Gollop and Roberts (1985) quantify the abatement pattern when the marginal
abatement costs of emissions are equalized across coal power plants. Without transaction costs, all firms
would face the same shadow value of emissions given by the market price of permits. Therefore, the marginal
abatement costs would be equalized under a centralized trading platform.
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this literature tests qualitative predictions of models of permit trading.5 A few recent works

take a structural approach to measure the welfare implications of cap-and-trade programs.

In the context of NOx regulation, Fowlie (2010b) estimates a model of abatement choice to

study the implications of rate-of-return regulation on permit trading program. Fowlie et al.

(2014) construct and estimate a dynamic game model of investment and entry/exit decisions

to discuss the implications of hypothetical market-based environmental policies in the US

cement industry.6

A distinctive feature of my paper is to model trading and banking decisions in a dynamic

equilibrium framework.7 Existing studies assume frictionless permit markets and stationary

regulatory environment. In such a setting, cap-and-trade is equivalent to imposing a Pigou-

vian tax. My model describes how firms make decisions on investment, trading, and banking

when transaction costs exist and regulatory standard is changing over time. My framework

can be used to study how the regulatory design of permit trading, such as the availability

of permit banking and alternative allocation rules for emissions permits, affects firms’ abate-

ment decisions. In contemporaneous work, Chen (2018) structurally estimates firms’ beliefs

on future permit prices, and examines the implications of these beliefs using a single-agent

dynamic model of abatement decisions and permit trading. In contrast, this study provides

a dynamic equilibrium framework in which permit prices are determined endogenously.

Finally, my study provides new insights for the evaluation of the Acid Rain Program

by studying the intertemporal aspects of firms’ behavior and the regulatory design. One

approach adopted in the literature is to calculate the cost saving resulting from permit trading

by estimating a cost function and a discrete choice model for abatement choices (see, e.g.,

Ellerman et al., 2000, Carlson et al., 2000, Keohane, 2006, and Chan, 2015). Researchers

found that adopting a permit trading program led to significant cost savings, compared with

traditional command-and-control approaches, although the actual cost did not reach the

least-cost solution. Another approach analyzes aggregate variables to discuss the efficiency of

the permit market (Joskow et al. 1998, Ellerman and Montero 2007, and Helfand et al. 2006).8

A recent paper by Chen (2018) examines the distortion in beliefs over future permit prices as

a source of inefficiency. My study complements the previous works by empirically examining

the dynamic aspects of compliance and abatement decisions under a cap-and-trade program.

5The literature has examined the independence of outcomes from the initial allocation (Reguant and
Ellerman, 2008 and Fowlie and Perloff, 2013) and the internalization of emissions costs (Kolstad and Wolak,
2008, Fowlie, 2010a, and Fabra and Reguant, 2014).

6Dardati (2014) studies how an allocation scheme for closing plants affects entry/exit decisions, using a
calibrated model of industry dynamics in the context of the Acid Rain Program.

7An on-going work of Cantillon and Slechten (2015) studies participation decisions and the price formation
of CO2 permit prices using trading data from the EU-ETS scheme.

8Joskow et al. (1998) finds that prices in the spot market and the EPA auction are very similar, concluding
that “a relatively efficient private market” had developed by mid-1994. Ellerman and Montero (2007) argues
for an efficient market of permits by comparing the actual and theoretically predicted volume of aggregate
banking. Helfand et al. (2006) uses monthly permit prices for the period 1994 to 2003 to test whether the
price path follows the Hotelling r-percent rule for intertemporal arbitrage. They reject the Hotelling rule,
which suggests there is inefficiency in the market.
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In particular, my study is the first to quantify the role of permit banking system. Previous

studies (e.g., Ellerman et al., 2000) note the importance of permit banking as a source of cost

efficiency. For this purpose, I construct an equilibrium model of the cap-and-trade program

that allows me to simulate the outcome when permit banking is not allowed.

2 Empirical Setting and Descriptive Analysis

2.1 The Acid Rain Program

Fossil-fuel electricity plants, especially coal-fired plants, produce sulfur dioxide (SO2) emis-

sions as a byproduct of electricity generation. SO2 is known to have detrimental effects on

human health and the environment. Although the federal government introduced command-

and-control-type regulations with the Clean Air Act Amendments of 1970, such regulations

have not been effective in reducing SO2 emissions.9 The failure of previous regulations led

to the introduction of the Acid Rain Program (ARP), a cap-and-trade program, as part of

Title IV of the 1990 Clean Air Act Amendments. The program began in 1995.

The target of the regulation is electricity generating units (EGUs) that use fossil fuels

and have an output capacity greater than 25 megawatts. The regulation was implemented

in two phases. In Phase I (1995–1999), a subset of eligible EGUs fell under the regulation.

These units included 263 EGUs, called the “Table 1” group, that were especially dirty and

old before the regulation, as well as an additional 182 EGUs from the Non-Table 1 group

as substitution or compensating units. In PhaseII (begun in 2000), all eligible EGUs are

mandated to comply with the regulation.

The ARP aims to reduce SO2 emissions by generation facilities to half of their 1980 levels,

based on which the total number of emissions permits is determined each year. Most emissions

permits are allocated for free to incumbent units. The EPA adopts a rule that determines

the unit-level allocation of emissions permits based on the characteristics of a unit.10 The

allocation is determined primarily by the average heat input during the period 1985–1987 and

the target emissions rate (i.e., emissions per fuel input) for each phase. Specifically, the target

emissions rate for Phase I is 2.5 pounds (lbs) per 1 million British thermal unit (MMBtu),

and the rate for Phase II is 1.2 lb/MMBtu. Some units also obtain an additional allocation

of permits based on technical and political considerations (Joskow and Schmalensee, 1998).

Note that the provisions in the 1990 legislation include detailed rules for permit allocations.

Thus, generation facilities knew the schedule of permit allocation before the program started

in 1995.

SO2 permits are tradable goods. Firms can sell or buy permits with other firms, including

financial companies or brokers that do not own any generating units and, thus, are not

9Ellerman et al. (2000) provide a brief history of the regulation on SO2 emissions.
10The unit-level allocation depends only on past information, and there is no update on the permit allocation

based on actual output or emissions. See U.S. Environmental Protection Agency (1993a,b) for the details.
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required to comply with the regulation. Although the EPA also holds an annual auction to

distribute around 2.7% of the yearly allocation, a centralized trading exchange does not exist.

Bilateral trading, which is often mediated by brokers, is the primary way to trade emissions

permits with other participants.

The operation of each regulated unit, especially emissions levels of SO2, is recorded

through the Continuous Emissions Monitoring System.11 At the end of the calendar year,

the annual level of SO2 emissions is finalized, and each regulated unit is required to surrender

emissions permits within a grace period of 60 days.12 The remaining permits are carried over

to the next year, referred to as the banking of emissions permits. There is no expiration date

for banked permits. As I discuss in Section 2.3, regulated firms banked a significant number

of permits in Phase I, when the annual allocation was more generous than it was in Phase II.

Although emissions permits were allocated to existing units without cost, most still needed

to decrease their emissions from their existing levels in order to comply with the regulation.

The regulated units were able to reduce emissions by reducing their utilization (output) or

reducing their emissions per input (emissions rate).13 The latter option of reducing emissions

rates was the primary channel of abatement, as explained in Section 2.3.2.

2.2 Data Sources

In this study, I focus on the period 1995 to 2003. Although the ARP continued after 2004,

the proposal by the Clean Air Interstate Rule, announced in December 2003, had a large im-

pact on regulated firms’ expectations over the future regulatory environment. The proposed

regulation aimed to strengthen the stringency of the SO2 regulations from 2010 within the

framework of the ARP. After the announcement, the permit price started to rise dramatically,

primarily because the value of emissions permits issued before 2010 would be higher than

those issued after 2010, according to the proposed regulation. Firms also started to invest in

scrubbers in anticipation of a stricter regulation.14 Thus, I do not include data after 2004,

focusing instead on those periods when the regulatory environment for SO2 emissions was

stable.15

11There should be no concern about manipulating the measurement of emissions because the operators are
required to perform periodic performance evaluations of the monitoring system. See https://web.archive.

org/web/20090211082920/http://epa.gov/airmarkets/emissions/continuous-factsheet.html for the de-
tails.

12If an affected unit does not hold sufficient permits to offset the emissions at the end of the compliance
deadline, unit operators are required to pay a penalty of USD 2000 per SO2 ton. However, compliance was
nearly 100% during the period of my analysis.

13The ratio of output to input is the design parameter for generating units. Therefore, firms are not able
to increase this aspect (i.e., improve fuel efficiency) to reduce emissions.

14See Schmalensee and Stavins (2013) for a detailed review on how the regulatory environment for SO2

emissions has changed since 2004.
15One might be concerned that the regulator (EPA) is able to modify the regulation at will, leading to

regulatory uncertainty. However, the EPA does not have the authority to modify the regulatory rules of the
Acid Rain Program, such as tightening the overall cap or changing the permit allocation. To do so, new
legislation would need to be passed by Congress.
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My data are a combination of transaction data for emissions permits and various data

on electricity production. The data on permit transactions are taken from the Allowance

Tracking System (ATS), operated by the EPA. The latter data are compiled from various

databases of the EPA and the US Energy Information Administration (EIA).

First, the EPA uses the ATS to manage permit allocations and to track private trans-

actions and the surrendering of permits for compliance. The ATS data are available to the

public. Each transaction record in the tracking system contains the account names of a

transferor and a transferee, vintage of permits, quantity of transferred permits, and confir-

mation date of the transaction.16 I constructed the transaction data at the firm and year

levels from the database.17 Specifically, I aggregated the account-level data into firm-level

data using ownership information taken from various sources, including the EGrid database

and EIA-860. The final data set includes the (1) permit holding at the beginning of the year,

(2) annual allocation, (3) volume of permit trading (net purchase of emissions permits), and

(4) banking volume.18

The ATS does not collect information on transaction prices. Instead, I collected the

market-price index of SO2 permits provided by Cantor Fitzgerald, one of the biggest brokers

in SO2 permit markets. The frequency of the price data is monthly. I explain the price data

further in Section 2.3.5.

The second part of my data set includes production data for the electricity companies.

Here, I combined multiple databases to construct the data set, including EPA data and EIA

survey data. The EPA makes publicly available the unit-level operation data of the generating

units, collected by the Continuous Emissions Monitoring System (CEMS). The CEMS data

include gross generation (in MWh), heat input (in MMBtu), and SO2 emissions. In addition,

the EIA conducts various surveys on the operation of power plants. Specifically, the Form

EIA-767 “Steam-Electric Plant Operation and Design Report” provides information on fuel

usage (sulfur content, ash content, heat inputs), net generation, and generation capacity at

the unit and monthly level. In addition, the Form FERC No. 423 (EIA-423) “Monthly

Report of Cost and Quality of Fuels for Electric Plants” provides plant-level and monthly

level information on fuel procurement, including fuel type, sulfur content, heat content, and

purchase costs.

16The confirmation date must lag behind the actual transaction date to some extent, although the prompt
recording of private trading was considered the rule rather than the exception, according to EPA staff and
industry experts. See Joskow et al. (1998) for details.

17Note that permit transactions between power plants (or generating units) within the same firm are simply
a reallocation within a firm. The trading of emissions permits is defined as a transaction with another firm
or broker.

18Emissions allowances issued under the Acid Rain Program have a vintage, that is, the year that the
allowance was issued. Firms can use a permit with a vintage that is either current or older (i.e., permit
banking) for compliance purposes. In principle, firms can trade emissions permits of future vintages, although
the trading volume for such permits is relatively small. Therefore, I focus on the trading of permits with a
current or old vintage, and construct a data set from these transactions.
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2.3 Descriptive Analysis

I now provide a descriptive analysis of my data set. I focus on various aspects of the ARP,

including the banking of emissions permits, abatement decisions of regulated sources, and

market for emissions permits. These descriptive findings motivate the modeling approach

introduced in Section 3.

2.3.1 Banking of Emissions Permits

Figure 1 shows the aggregate SO2 emissions level and emissions caps under the ARP from

1990 to 2003. The bars show the emission levels each year, and the dashed lines show the

emission caps. As mentioned in Section 2, the timing of the regulation varied across EGUs.

I denote those units regulated since 1995 as Group I units, and those regulated since 2000

as Group II units. The blue bar in the figure corresponds to the emissions of Group I units,

and the orange bar corresponds to those of Group II units. The blue dashed line shows the

allocation for Group I units, and the black dashed line from 2000 shows the total cap of

emissions, including both Group I and II units.

The figure shows that Group I units reduced their emissions by almost half compared

with their 1980 levels, once Phase I started in 1995. While both Group I and II units reduced

their emissions further in 2000, the first year of Phase II, Group I units did not reduce their

emissions by as much as they did in 1995. The emissions before 1999 were significantly lower

than the emissions cap. However, after 2000, the aggregate emissions exceed the annual

allocation of emissions permits, implying that Group I units saved their permits in Phase

I, and then began using them after 2000 to ensure compliance. Note that the regulator

had already announced the allocation schedule in 1990. Thus, regulated firms behaved in a

forward-looking manner, taking this schedule into account.
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Figure 1: Aggregate Volume of SO2 Emissions and Caps (1990–2003)
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Notes: The blue (orange) bar corresponds to emissions from Group I (Group II) units. The
blue dashed line shows the permit allocation for Group I units, and the black dashed line
(from 2000) shows the total cap, including the allocations for both Group I and II units.

2.3.2 Abatement Strategy for Coal Units

Emissions from electricity generation can be reduced either by (1) reducing output, or (2)

reducing the emissions rate (i.e., emissions per input).19 However, the former strategy was

not a major option for coal units regulated under the Acid Rain Program. In Appendix

A, I run a difference-in-differences (DID) regression. Here, I exploit the variation of the

timing of the regulation across units to estimate the effect of the regulation on the output

(utilization rate) of EGUs. I found that the utilization rate decreased by only 2%-6% after

the introduction of a cap-and-trade program.20 In this subsection, I explain the abatement

strategy of adjusting the emissions rate of EGUs whose primary fuel type is coal.21

Two common options are available to reduce the emissions rate of coal units. The first is

called fuel switching. An operator of coal units can switch the type of coal from dirty (e.g.,

high-sulfur bituminous coal) to cleaner (e.g., subbituminous coal or low-sulfur bituminous

coal). The fuel costs of cleaner coal are higher than those of dirty coal. In addition, switching

fuel types requires retrofitting the boiler to make it compatible with the new type of coal,

which incurs a fixed cost. Another abatement option is to install flue-gas desulfurization

equipment (a scrubber). This equipment is installed at the stack of a generation unit and

19The ratio of output to input is a fixed design parameter of generating units. Thus, firms cannot improve
their fuel efficiency as a way to reduce emissions.

20I focus on the intensive margin of operation, and treat entry/exit as given. Although the retirement of
coal units is a potential option for emissions abatement, the data show that this margin is small. Among the
263 EGUs in the “Table 1” group, only seven units retired before 1995, and two additional units retired before
2003. Of the other coal units, around 6% of EGUs retired between 1990 and 2003.

21Note that although the target of the ARP includes all types of fossil fuel units (coal, gas, and oil), SO2

emissions from gas and oil units are relatively small, and no room remains to reduce the emissions rate of
these units.
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eliminates more than 80% of SO2 emissions. However, this option incurs large a investment

cost, as well as a long lead time (two to three years, on average).

Figure 2 shows the distribution of unit-level SO2 emissions rates (measured in pounds per

MMBtu) for each group in selected years. The left panel shows the distribution for Group I

sources. The emissions rates of these sources decreased between 1990 and 1995, the beginning

of Phase I. The rates then stayed almost constant during Phase I, and decreased further in

1999, anticipating the beginning of Phase II. The emissions rates of generating units in Group

II did not change until 1999, and then decreased in 2000, the first year of the cap-and-trade

program for these units. These observations imply that firms adjusted their emissions rates

at the beginning of each phase, but that the emissions rates remained almost constant within

the phase. This observation motivates the timing of abatement investment in the model I

introduce in Section 3.

Another important finding from Figure 2 is the flexibility of the compliance patterns.

The red vertical lines show the target emissions rates in each phase. Generating units would

need to achieve this target rate if they did not trade emissions permits with other units. The

figure indicates that some units achieved a greater emissions reduction than necessary, while

others did not reduce their emissions rates, and thus needed to obtain additional permits.

This implies that the trading of permits played an important role in compliance decisions.

Figure 2: Distribution of Unit-level SO2 Emissions Rate
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Notes: The blue dots show the weighted average of emissions rates. The upper (lower) bars
correspond to the 10th (90th) percentile of the distribution.

2.3.3 Heterogeneity of Regulated Firms

The heterogeneity of firms is an important factor in the evaluation of a cap-and-trade pro-

gram. Firm heterogeneity is the source of the gains from trade: firms with higher (lower)

costs of abatement can buy (sell) emission permits by trading with other firms. As a result,
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the pattern of emissions is more efficient than that in an autarky, where no emissions permits

are traded.

Table 1 shows the descriptive statistics for the characteristics of the regulated firms. The

table shows that regulated firms differ substantially in terms of firm size (measured by the

number of regulated units and the total capacity of those units), the emissions rate before

the regulation started, and initial allocation. These factors affect the firms’ abatement and

trading decisions. For example, firms that had a higher emissions rate before the regulation

needed to make a greater effort to comply, either by reducing their emissions or by buying

permits. Firms with a higher initial allocation, conditional on other factors being fixed,

are more likely to be sellers of permits in the market. The model introduced in Section 3

incorporates the observed heterogeneity across firms.

Table 1: Firm Heterogeneity
Mean St. Dev. 25 Percentile Median 75 percentile

Emissions Rate for Group 1 units in 1990 3.28 1.49 2.30 3.28 4.36
Emissions Rate for Group 2 units in 1990 1.11 0.77 0.69 0.94 1.31
# units in Group 1 5.66 4.87 2.25 4.00 6.00
# units in Group 1 4.39 5.78 1 2.5 5
Generation capacity for Group 1 units 19,953.60 21,897.87 6,425.00 14,025.00 24,182.50
Generation capacity for Group 2 units 13,190.18 17,004.14 1,615.5 6,530 18,145
Initial allocation 75,207.8 105,611.5 17,214.5 41,449 88,605

Notes: There are 114 firms in the sample. The unit for emissions rate (in rows 2 and 3) is
lbs per MMBtu. The emissions rate is calculated at the firm-level. The unit for generation
capacity (in rows 6 and 7) is megawatts.

2.3.4 Firm-level Trading Information

I now explain firms’ decisions related to the trading of emissions permits. U.S. Environmental

Protection Agency (2004) reports that transactions of emissions permits between related

entities (namely power plants and generating facilities under the same ownership) have been

active since the beginning of the program. Therefore, I focus on trading with other firms

(e.g., other affected firms and financial brokers) in the market.

Figure 3 shows the correlation between the trading decisions in the permit market and

firm size, measured by the sum of the nameplate capacity of units under the ARP. The left

panel shows the unconditional probability of a market transaction at the firm-year level, and

the right panel shows the trading experience in the sample period at the firm level.

The left panel shows that firms did not necessarily trade every year. The unconditional

probability of conducting permit trading was 76%. The trading probability was positively

correlated with firm size. This observation is also found in the context of the EU–ETS

scheme(see, e.g., Jaraitė-Kažukauskė and Kažukauskas, 2015). Although this finding can be

interpreted as a suggestive evidence of fixed transaction costs, firms do not need to conduct a

transaction in every period, owing to the storability of emissions permits. In the right panel, I
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show the firm-level experience of market trading during the sample period. As shown, 94% of

firms had at least one experience of trading with another firm in the sample period, although

some firms, most of which are small, did not trade at all.

Figure 3: Trading Pattern at Firm Level
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2.3.5 Price of Emissions Permits

As discussed in Section 2.1, there are no centralized trading exchanges for emissions permits

under the Acid Rain Program. Although regulated firms need to conduct bilateral trade

with other firms, brokers act as intermediaries for these transactions. Brokers also provide

information about permit prices. Figure 4 shows the price information provided by Cantor

Fitzgerald, a broker in this market. I use the monthly SO2 price index as a price measure.

Cantor Fitzgerald constructs this index using various trading data, including allowance bids

(to buy), allowance offers (to sell), and actual trade prices, and publishes it on the company

website every month. I aggregate the monthly price index by taking the median for each

year. Note that the price is normalized to the 2000 level using the producer price index.

The price at the beginning was around USD 150, falling to below USD 100 in 1996 and

1997. Then, it increased to USD 200 in 1999, before fluctuating in the range USD 120–200

after 2000. The figure suggests that the market price reflects the availability of banking. In

the absence of permit banking, I would expect to see a spike in the permit price between

Phases I and II, because the target emissions rate in Phase II is much stricter than that

in Phase I. Instead, the permit price increases gradually over time, though it is relatively

volatile. 22

22A key theoretical prediction on permit prices is the Hotelling rule: Permit prices should increase with the
risk-free interest rate if the market is efficient and there are no transaction costs. Helfand et al. (2006) test
the Hotelling rule using monthly prices of emissions permits for the same period. They reject the rule after
controlling for structural changes and market shocks.
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Figure 4: Price of Emissions Permits by a Broker
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Notes: Prices are normalized to January 2000 prices using the producer price index.

3 Model

3.1 Overview of the Model

This section introduces a model of regulated firms and permit market equilibrium under

the cap-and-trade program. The model incorporates the descriptive findings in the previous

section, including the nonstationary nature of the regulations (i.e., the changing permit al-

locations), dynamic decisions on permit banking and investment, frictions in permit trading,

and firm heterogeneity.

The model is set as a nonstationary and finite-horizon model, where time is indexed by

t = 1995, . . . , 2003(≡ T ). Each discrete decision period corresponds to one compliance year.

Firms have a common discount factor of β. An overview of the firm-level decision problem is

provided in Figure 5. The problem has two building blocks: (i) an investment in abatement

options at the beginning of each phase (1995 and 2000), and (ii) decisions on production,

trading, and banking in each year. At the beginning of each phase (i.e., 1995 and 2000), firms

make a decision on abatement investment and determine the emissions rate Rki (k = 1, 2).

The emissions rates are assumed to be fixed within each phase. This assumption reflects the

observation from Section 2.3 that the emissions rate changes at the beginning of each phase,

and then stays constant within the phase.

Given the emissions rate, each firm i makes decisions on production, permit trading, and

banking. The timeline of each period is as follows:

1. Firm i holds permits that are carried over from the previous period, denoted by hit. A

firm also receives an annual allocation of permits, denoted by ait.

2. Participation decision: Denote firm i’s experience of market trading by Iit; i.e., Iit = 1

if a firm has experience in market trading, and 0 otherwise. If Iit = 0, a firm can pay
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the one-time sunk cost Fit to participate.

3. A firm chooses (i) the production quantity of each generating unit {qjt}j , (2) the net

volume of trading bit if a firm is already participating in the market, and (3) the banking

of permits hi,t+1. When deciding on the net-purchase of emissions permits bit, each firm

is a price-taker and treats the market price of emissions permits Pt as given.

4. A firm obtains profits from electricity generation, and pays the costs of permits (or

obtains the revenue from selling permits).

5. Move to the next period with the holding hi,t+1.

The equilibrium prices of the emissions permits Pt are determined by market clearing condi-

tions in each period, which I introduce in Section 3.6. I now explain each component of the

model.

Figure 5: Overview of the Firm-level Decision Problem
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3.2 Electricity Production and SO2 Emissions

Firms earn profits from electricity production in a competitive electricity market. Firm i holds

Jit units of the regulated sources, and chooses a production quantity qjt for each generating

unit j. The profit is given by

πit ({qjt}j) =
∑
j∈Jit

{
(τ elecst − c

fuel
jt (Rjt)) · qjt − g(qjt, kj)

}
, (3.1)

where τ elecst is the electricity price in state s where unit j is located, and cfueljt (Rjt) denotes

the unit-specific fuel costs of production as a function of the emissions rate Rjt. I explain
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how the unit-specific fuel cost cfueljt depends on the emissions rate Rjt shortly. Note that

fuel costs account for around 75% of the total operating expenses (see EIA, 2012). Here,

g(qjt, kj) is the convex cost of production, and captures the increasing costs of operation near

the capacity constraint (see, e.g, Ryan, 2012).

Note that the profit πit(·) is the gross profit from electricity production, which excludes

costs associated with permit trading. In their production decisions, though, firms should

consider the cost of using emissions permits. I discuss the optimal decision on production

quantity in Section 3.4.

Electricity production is associated with SO2 emissions. Firm-level emissions are given

by

eit ({qjt, ρjt}j) =
∑
j∈Jit

ρjtqjt, (3.2)

where ρjt is the unit-level SO2 emissions rate per production.

I now explain how the profits πit and emissions eit depend on the emissions rate Rjt,

defined as the emissions level per unit of fuel input (one MMBtu). First, ρjt in equation (3.2)

is defined as

ρjt = HRj ·Rjt.

The unit-specific heat rate HRj is the inverse of the production efficiency measure, which

represents how much fuel input (in MMBtu) is needed to produce one unit of output (MWh

of electricity). The heat rate HRj is a design parameter of generating units and, therefore,

is assumed to be exogenous.

The fuel cost cfueljt (Rjt) also depends on Rjt because cleaner coals tend to be more ex-

pensive. Specifically, the cost can be expressed as

cfueljt (Rjt) = HRj · pfueljt (Rjt),

where pfueljt (Rj,t) is the fuel price per 1 MMBtu of fuel input. I estimate the hedonic function

that predicts the fuel price as a function of the emissions rate Rjt.

As discussed in Section 2, firms can adjust the emissions rates of their coal units. In

Section 3.5, I introduce the model of how firms determine their emissions rates by making

an investment at the beginning of each phase. Note that I treat gas and oil units separately

from coal units and Rjt for gas and oil units as fixed and exogenous in the model. This is

because gas and oil units have quite low SO2 emissions rates and are not able to reduce their

emissions rates.

Aggregation of Unit-Level Emissions Rate at the Firm-Level When modeling in-

vestment decisions, a key issue is the dimensionality of the state space. If I model the

investment decision at the generation unit level, the state variable should include the emis-

sions rate for each generation unit, which would make the number of state variables high.
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Because the median number of coal units is five in my sample, such a modeling approach

would be subject to the curse of dimensionality and be intractable for the analysis.

To maintain the tractability of the model, I aggregate the unit-level emissions rates at

the firm-level, and assume that each firm decides on a single emissions rate that is common

across coal units within the same firm (i.e., Rit ≡ Rjt, for j ∈ Jit). Under this assumption,

the number of state variables related to the emissions rate is just one. Table 2 examines the

validity of this approach. In the third row, I report the firm-level emissions rate, which is

equivalent to the weighted mean of the emissions rates across units. The fourth row shows

the standard deviation of the unit-level emissions rates within a firm. Table 2 shows that the

standard deviation is much smaller than the firm-level emissions rate. This implies that the

variation in the emissions rate across coal units is small within a firm, thus supporting my

modeling approach.

Table 2: Unit-level Variation of Emissions Rate of Coal Units at the Firm-level

1995-1999 2000-2003
Mean Std. Dev. Mean Std. Dev.

Emissions rate at the firm-level 1.53 0.96 1.05 0.83
Standard deviation of unit-level emissions rate within a firm 0.59 0.55 0.33 0.40

Notes: The unit is pounds (equivalently lbs) per 1 MMBtu.

3.3 Structure of Permit Trading and Transaction Costs

Each firm is allocated an annual allocation of permits ait in each period. Because the allo-

cation plan was announced before the regulation, the sequence of {ait}t is exogenous in the

model. The firm also holds the emissions permits that are carried over from the previous

period, denoted by hit. A firm decides on its emissions level eit, which is determined by

the production quantity {qjt} (equation (3.2)), net purchase volume bit, and banking volume

hi,t+1. Here, bit is positive (negative) if firm i is a buyer (seller), implying that she is buying

(selling) |bit| units of permits.

The transition of a permit holding is given by

eit + hi,t+1 = ait + hit + bit, (3.3)

hi,t+1 ≥ 0. (3.4)

Note that equation (3.4) is the nonnegativity constraint of banking, and excludes the pos-

sibility of borrowing permits from a future allocation. I assume that firms achieve perfect

compliance in my model, because the compliance rate under this regulation is nearly perfect.

I model the permit market as a competitive market with transaction costs. The Acid

Rain Program was a federal-level regulation in which many electric utilities and financial
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companies participated. Exercising market power in the permit market was limited.23 The

presence of transaction costs reflects the fact that the majority of permit transactions were

bilateral, because there were no centralized exchanges for emissions permits. Ideally, a model

would incorporate bilateral trading of emissions permits across participants. However, such

a model could be quite difficult to solve and analyze because emissions permits are divisible

objects and my model also features dynamic investments in clean technology and permit

banking. Thus, I capture the nature of the permit market by introducing transaction costs

in a reduced form.24

Firms are price-takers in the permit market and face the market price Pt. In addition,

they pay two types of transaction costs. First, when a firm trades for the first time, it pays a

sunk cost of participation Fit. This cost is motivated by the observation that some firms did

not participate in permit trading. An interpretation of Fit includes the costs associated with

setting up a trading desk at the company and hiring a financial trading expert. I specify Fit

as Fit = F + εit, where F is the mean participation cost, and εit is an idiosyncratic cost shock

that follows the type-I extreme value distribution G(·;σF ).

Second, firms pay variable transaction costs associated with the net purchase of permits

bit (Stavins, 1995). This cost is given by TC(|bit|), where TC(·) is a differentiable and

strictly convex function. Variable transaction costs include brokerage commissions and bid-

ask spreads. The convex nature of the cost function also captures the difficulty of large-scale

transactions of emissions permits. Suppose that a firm wants to buy a certain quantity of

permits, but its trading partner cannot meet the demand. Therefore, the firm needs to find

a different trading partner, hence incurring a costly search process in a bilateral market.

Convex transaction costs are employed in the theoretical finance literature (e.g., Gârleanu

and Pedersen, 2013, and Dávila and Parlatore, 2017) and are motivated by empirical findings

(see, e.g., Breen et al., 2002, Lillo et al., 2003, and Robert et al., 2012).

Net-purchase by Fringe Firms The sample does not include all firms participating in

permit trading. For example, financial companies or brokers do not have generation facilities,

but can still trade permits. In addition, some electricity companies were excluded from the

sample in the process of data cleaning. I denote these firms as fringe firms in the permit

market. To accommodate the presence of fringe firms, I introduce the net demand for permits

by firms outside my sample; the total net purchase by fringe firms is denoted as B̄fringe
t (Pt).

I explain the specification and estimation of the fringe demand function in Section 4.3.

23Liski and Montero (2011) examined how the four biggest electric utilities (in terms of initial allocation)
traded in the permit market. They found that firms’ behavior is not consistent with the model of market
power in a storable commodity market.

24In the model, I consider that firm-level permit trading decisions incur transaction costs. This implicitly
assumes that there are no costs associated with transactions across generating units within the same firm.
The latter transactions simply reflect a reallocation of inputs within a firm, which should present decisions
that are more flexible than those associated with permit trading with other firms. In fact, the trading of
permits between related entities (reallocation) has been active since the implementation of the regulation, as
mentioned in Section 2.3.4 (see, e.g., U.S. Environmental Protection Agency, 2004).
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3.4 Optimal Choices of Production, Trading, and Banking

I now consider the optimization problem in year t. A firm makes both discrete (participa-

tion) and continuous decisions related to production, trading, and banking. I first explain the

decision problems conditional on the status of trading participation. These problems char-

acterize the values from participation and nonparticipation, which determine the optimal

participation decision.

Let V 1
it and V 0

it be the optimal values when a firm participates in trading (“trader”) and

does not participate (“nontrader”), respectively. The Bellman equation for a trader is given

by

V 1
it(hit, Rit) = max

{qjt}j∈Jit ,bit,hi,t+1

πit ({qjt}j)− (Ptbit + TC(|bit|)) + βEVi,t+1(hi,t+1, 1, Ri,t+1)

s.t. eit ({qjt, ρjt}j) + hi,t+1 = ait + hit + bit, (3.5)

hi,t+1 ≥ 0.

Here, EVit(hit, Iit, Rit) denotes the ex ante value function for firm i in period t when the firm

holds hit units of emissions permits, the trading experience is Iit, and the firm-level emissions

rate is Rit. Recall that Iit = 1 if firm i has participated in the market previously, thus paying

the participation cost. When a firm is a nontrader, the trading volume bit is not the choice

variable. The Bellman equation in this case is similarly given.

Note that the value functions V 0
it(·) and V 1

it(·) are indexed by firm i and time t. The

former is due to the firm heterogeneity, and the latter is due to the nonstationary nature of

the decision problem. These indices implicitly subsume all state variables, except for hit, Iit,

Rit, and εit. I assume perfect foresight over the state variable in the next period, except for

the shock to the participation cost εit.

The optimality conditions for the traders are given by

τ elecst − c
fuel
jt − g′(qjt)
ρjt

= λit (3.6)

λit = Pt +
dTC(|bit|)

dbit
(3.7)

λit = β
dEVi,t+1(hi,t+1, Ii,t+1, Ri,t+1)

dhi,t+1
+ µit, (3.8)

µit ≥ 0 ⊥ hi,t+1 ≥ 0, (3.9)

where λit denotes the Lagrange multiplier on the transition of permit holding (3.3), and µit

denotes the Lagrange multiplier on the nonborrowing constraint (3.4). I call λit the shadow

value of emissions permits for firm i.

Equation (3.6) determines the optimal production decision given the shadow costs of

emissions permits. The left-hand side is the marginal profit from additional emissions, which

should be equal to the shadow costs of emissions permits λit at the optimum.
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Equations (3.7)–(3.9) determine the shadow value λit from the trading and banking de-

cisions. Equation (3.7) states that the shadow value is equal to the sum of the market price

and the marginal transaction costs dTC(|bit|)
dbit

. In other words, the marginal transaction cost

is the wedge between the market price and the firm-level shadow value of emissions.

Equations (3.8) and (3.9) constitute the Euler equation: the shadow value of an emissions

permit today is equal to the sum of the discounted marginal value of holding an additional

permit tomorrow and the shadow value of borrowing (when it is binding). These conditions,

along with the transition equation of permit holdings (3.3), determine the optimal choices

for production {qjt}j , trading bit, and banking hi,t+1.

The optimality conditions for nontraders are the same as above, except bit = 0 and I do

not have equation (3.7). These conditions imply that, in this case, the shadow value of an

emissions permit is not directly related to today’s permit price. Rather, the shadow value is

given by the discounted marginal value from equation (3.8).

Next, I consider the participation decision. If a firm has no prior trading experience (i.e.,

Iit = 0), it can choose whether to participate in the market by paying Fit(= F + εit). A firm

participates in the market if V 1
it(hit, Rit) − (F + εit) > V 0

it(hit, Rit). This optimal decision

leads to the participation probability given by

Pit(hit, Rit) =

∫
1
{
V 1
it(hit, Rit)− (F + εit) > V 0

it(hit, Rit)
}
dG(εit).

If a firm has already participated in trading (i.e., Iit = 1), it does not have to pay the

participation costs.

Based on the optimal choices for traders and nontraders, I now provide the value func-

tion. Let Vit(hit, Iit, Rit, εit) be the value function after observing the random draw of the

participation costs. The value function is given by

Vit(hit, Iit, Rit, εit) =

max
{
V 0
it(hit, Rit), V

1
it(hit, Rit)− (F + εit)

}
if Iit = 0

V 1
it(hit, Rit) if Iit = 1.

Finally, the ex ante value functions EVit(hit, Iit, Rit) (before observing εit) are given by the

integral of Vit with respect to εit.

Continuation Value at the Terminal Period My model has a finite time period, and

the terminal period T corresponds to the year 2003, which is the last period of my sample.

However, the Acid Rain Program continued after 2003, and the level of banking at the end

of 2003 was still substantial. To deal with this issue, I include the reduced-form continuation

value function CVT+1(hi,T+1) in the model. This term captures the banking incentive at the

terminal period T (= 2003). In Section 4.2, I provide the functional form of CVT+1(hi,T+1),

and estimate it along with the other parameters.
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3.5 Investment Decisions on Emissions Rate

A firm decides on the phase-specific emissions rates Rki (k = 1, 2) at the beginning of

each phase. This implies that Rit = R1
i if t ∈ {1995, . . . , 1999} and Rit = R2

i if t ∈
{2000, . . . , 2003}. The lower the emissions rate, the higher is the level of investment. I further

assume that the emissions rate is a continuous choice variable. I denote the cost function of

investment by Γ(R̄ − R), where R is the emissions-rate level chosen by a firm, and R̄ is the

emissions rate before the investment.

The investment problem for Phase I is given by

max
R1

i

EVi,1995(0, 0, R1
i )− Γ(R0

i −R1
i ) s.t. R1

i ≤ R0
i , (3.10)

where R0
i is the emissions rate in 1990, that is, before the regulation. I incorporate the

adjustment costs and the irreversibility of investment by allowing R0
i to affect both the

investment cost and the choice set of the emissions rate R1
i . Note that hi,1995 = 0, Ii,1995 = 0,

by definition. The problem for Phase II is defined similarly, except that the investment cost

now depends on R1
i , which is determined endogenously in Phase I.

3.6 Dynamic Competitive Equilibrium of Permit Trading

I now define an equilibrium for the permit market. I assume that firms have perfect foresight

over the future environment, and that the only stochastic shock is the participation cost εit.

I discuss the importance of this assumption in Section 3.8.

Definition (Dynamic Competitive Equilibrium). In a finite-period competitive equilibrium

with perfect foresight, a sequence of permit prices {Pt}2003
t=1995 is determined such that

1. [Optimization] Each firm i optimally chooses {{q∗jt}j∈Jit , b∗it, h∗i,t+1}2003
t=1995 and {R1∗

i , R
2∗
i },

given a sequence of permit prices, and

2. [Market Clearing]
∑

i b
∗
it

(
{Pt}2003

t=1995

)
+B̄fringe

t (Pt) = 0 holds for all t = 1995, · · · , 2003.

To solve the equilibrium, I repeat the following procedure: (i) Given a candidate of permit

prices {Pt}2003
t=1995, solve the individual optimization problem by backward induction for all

firms, and (ii) calculate the aggregate level of net purchases to check whether the market-

clearing conditions are satisfied in all periods. I use a heuristic rule of updating the price

vector in each iteration, which successfully finds an equilibrium vector of permit prices sat-

isfying the market-clearing conditions. I explain how to numerically compute a vector of

equilibrium prices in Appendix E.3.25

25Although I do not have a formal proof for the uniqueness of the equilibrium, I try different initial prices
of emissions permits when I numerically solve a dynamic competitive equilibrium. Thus, I confirm that these
initial values converge to the same equilibrium prices.
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3.7 Model Implications

This subsection discusses the implications of the model. In particular, I argue the role of

transaction costs, TC(·) and Fit, in firms’ dynamic decisions and equilibrium outcomes.26

To discuss this point, I first show the benchmark case in which no transaction costs exist;

namely, T (·) = 0 and Fit + εit = 0. In this case, the optimality conditions (3.6)–(3.9) can be

summarized as27

τ elect − cfueljt − ∂g(qjt,kj)
∂qjt

ρjt
= Pt. (3.11)

Pt = βPt+1 + µit, µit ≥ 0 ⊥ hi,t+1 ≥ 0. (3.12)

The role of Transaction Costs in Avoiding the Indeterminacy of Trading/Banking

Decision Equation (3.12) implies that the equilibrium permit prices Pt should increase over

time at the rate β−1, as long as the banking volume is positive and no transaction costs exist.

This property is known as the Hotelling r−percent rule, which states that the price of an

exhaustible resource should increase at a rate equal to the inverse of the interest rate (see,

e.g., Rubin, 1996).

More importantly, the model suffers from indeterminacy of individual optimal decisions:

it does not identify the individual optimal behavior for trading bit and banking hi,t+1 in the

absence of transaction costs. This is because the discounted marginal value from banking is

constant (and given by βPt+1), which is equal to the current shadow value Pt in equilibrium.

Thus, the marginal values of net purchases bit and banking hi,t+1 are always the same.

Therefore, all choices are equivalent for individual firms, as long as a firm can produce the

level of emissions given by the optimality condition on production quantity (3.11).

I now consider the case in which transaction costs are present. Combining optimality

conditions (3.7) and (3.8) and using envelope theorem, I obtain the following condition:

Pt +
dTC(|bit|)

dbit
= β

{
Pt+1 +

dTC(|bit|)
dbit

}
+ µit.

This condition implies that the permit price does not necessarily increase at the rate of

β−1. Intuitively, TC(bit) prevents firms from engaging in complete intertemporal arbitrage.

Without convex costs, the price path in which Pt > βPt+1 (or Pt < βPt+1) cannot be an

equilibrium, because firms have an incentive to sell their permit holding (or buy infinitely

many permits) in period t.

The model now identifies the optimal decisions for both net purchases bit and banking vol-

ume hi,t+1, because the marginal values of the two are no longer constant. The marginal cost

26A discussion on how the presence of transaction costs breaks the independence property of the initial
allocation(i.e., Coase, 1960 theorem) is available upon request.

27Equation (3.7) implies that λit = Pt holds for all i. Using the envelope theorem, equation (3.8) implies

that
dEVi,t+1(hi,t+1,Ii,t+1,Ri,t+1)

dhi,t+1
= Pt+1. See Appendix C for the derivation.
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from net purchases is increasing owing to the convex transaction costs TC(bit). Intuitively,

buying additional permits becomes more difficult. The discounted marginal value from bank-

ing, given by β
(
Pt+1 + dTC(|bit|)

dbit

)
, is decreasing in ht+1, because holding additional permits

in period t + 1 (i.e., higher hi,t+1) leads to lower bi,t+1 (selling more permits) and, thus, a

lower marginal value. In other words, the marginal revenue from selling is decreasing as firms

sell additional permits because they have to pay transaction costs.

Role of Transaction Costs in Efficiency One of the virtues of a cap-and-trade regula-

tion is that the equilibrium allocation of emissions, given the emissions cap, is efficient in the

absence of transaction costs. This assertion is confirmed by equation (3.11), which implies

that the marginal profit from producing one unit of emissions is equalized across firms at the

level of permit price Pt. The key mechanism is that all firms are facing the same shadow

value, given by the market price (i.e., λit = Pt, ∀i).
I now examine how the trading behavior affects the shadow costs of emissions permits

and leads to an inefficient outcome of emissions in the presence of transaction costs. Consider

two types of firms: a buyer (i.e., bbuyer,t > 0), and a seller (i.e., bseller,t < 0). Equation (3.6)

implies that

λbuyer > Pt > λseller.

The inequalities hold because dTC(|bit|)
dbit

> 0 for b > 0, and dTC(|bit|)
dbit

< 0 for b < 0. Intuitively,

in the presence of variable transaction costs, buyers must pay additional costs to purchase

emissions permits. In contrast, the revenue from selling a unit of emissions permits is the

market price minus the marginal transaction costs. Thus, the marginal profit of emissions for

the buyer is strictly higher than that for the seller. In other words, buyers produce less and

sellers produce more than the efficient level at which the marginal profits of the two firms

are equalized.

The heterogeneity of the shadow value has an implication for firms’ dynamic decisions,

namely, on their investment behavior and permit banking. The return on investment is

determined by the marginal abatement of emissions, given by
∑

j HRjtqjt, evaluated at the

the shadow value of λit.
28 Because the shadow value for buyers is higher than that for sellers,

buyers have a greater incentive to invest, whereas sellers have a lower incentive.

With regard to permit banking, buyers face a lower incentive to bank permits because

the transaction costs lead to a higher shadow value today. On the other hand, sellers prefer

to bank additional permits because of the lower shadow value. However, the aggregate level

of permit banking can be higher or lower than the first-best case when no transaction costs

exist.

28See Appendix D for the derivation of the marginal returns from an abatement investment.
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3.8 Discussion of Modeling Assumptions

Output price τst I assume that output price τst is given as exogenous. Because the main

target of the Acid Rain Program is coal units, which are typically infra-marginal units, the

program does not affect the electricity price in the wholesale market.29

Public Utility Regulation An important factor when evaluating an environmental reg-

ulation in the electricity industry is the presence of a public utility regulation (rate-of-return

regulation). The literature examines how a public utility regulation affects the performance

of market-based environmental regulations, including the Averch–Johnson effects on compli-

ance decisions (Fowlie, 2010b in the NOx regulation and Cicala, 2015 in the SO2 regulation)

and the regulatory uncertainty associated with the cost-recovery rule of permits (see, e.g.,

Arimura, 2002).

Although my framework does not explicitly model the presence of a public utility regula-

tion, it accounts for such an effect through the transaction costs of emissions permits. Given

that the above two channels make firms less likely to trade emissions permits and more likely

to reduce their emissions for compliance, the effect of a public utility regulation should be

captured by the transaction costs of permit trading.

Interpretation of Continuation Value Function CVT+1(·) The continuation value

function CVT+1(hT+1) captures the incentive to bank emissions permits at the terminal

period (i.e., 2003). More precisely, I assume that CVT+1(·) captures a firm’s incentive to

bank under the expectation that the Acid Rain Program continues after 2004 without any

additional regulations. This is a reasonable assumption, given that the CAIR was announced

in the last month of 2003 (i.e., December 2003), implying that, in 2003, firms were expecting

the same regulatory environment to continue after 2004.30

No Aggregate Uncertainty The model assumes perfect foresight on the evolution of the

profit πt, namely, electricity demand and production costs.31 This assumption implies that

permit prices Pt are deterministic in equilibrium and therefore firms should have perfect

foresight over permit prices. Under this assumption, the value function Vt, indexed by time

script t, subsumes those deterministic state variables. The state variables that I need to

track down to solve the individual optimization problem are permit holding hit, trading

experience Iit, and firm-level emissions rate Rit. Although perfect foresight is certainly a

29See Fowlie (2010b) for a similar discussion in the context of NOx regulations.
30Alternatively, I could model the terminal period as a stationary and infinite-period dynamic programming

problem by assuming that the same regulatory environment continues and the CAIR would not be introduced.
Although this approach would allow me to avoid specifying a parametric form of the continuation value
function, it is computationally more demanding to solve the firm’s optimization problem.

31I also assume perfect foresight with regard to the permit allocation ait. This assumption reflects the fact
that the permit allocation schedule was announced before the Acid Rain Program started, and did not change
during my sample period.
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strong assumption, it reduces the computational burden and makes the model tractable

for estimations and simulations. Incorporating aggregate uncertainty about demand and

production makes the model intractable for two reasons.

First, incorporating a stochastic transition of demand, costs, and permit prices increases

the dimension of the state space. In addition to (hit, Iit, Rit), I would have to consider the

transition of the profit function πit and the permit price Pt. If I rewrite the profit function

as πit({qjt}j) ≡ πi({qjt}j ;Dt, Ct), where Dt is the aggregate demand shock and Ct is the ag-

gregate cost shock, the additional state variables are (Dt, Ct, Pt), yielding six state variables.

Because my framework incorporates the rich heterogeneity of regulated firms, I need to solve

the dynamic optimization problem separately for each firm. Therefore, expanding the state

space would make the model more difficult to compute and estimate.

Another significant problem is how to model the transition of equilibrium permit prices.

This problem was first identified by Krusell and Smith (1998), and is both conceptually

and computationally difficult. With the aggregate uncertainty of demand and costs, the

equilibrium permit prices become random variables. Thus, firms need to form an expectation

over future equilibrium permit prices. In a rational expectation, firms need to track all

information that forecasts the permit prices tomorrow Pt+1. Permit prices are determined

by the market-clearing condition, which consists of the net purchases of emissions permits

by every firm (i.e., bi,t+1 for all i). Net purchase depends on the state variable (hit, Rit, Iit),

permit allocation ait, and profit function πit. Therefore, in principle, firms must know and

incorporate the complete cross-sectional distribution of the state variable in the state space

in order to form a rational expectation of future permit prices. Because there are 114 firms in

my sample, this approach would be infeasible due to the curse of dimensionality. This issue

has been known in the literature by Krusell and Smith (1998) on a heterogeneous macro

model, Lee and Wolpin (2006) for the structural estimation of a general equilibrium labor

model, and Gillingham et al. (2015) for a dynamic demand model for new and used car

markets.

Given these complications, I choose to assume perfect foresight. As a result, the model

can incorporate other important considerations, especially firm heterogeneity, while still being

tractable for estimation and simulation analyses. I leave this extension for future work. 32

32There are two potential approaches to deal with this problem. The first approach, taken by Gillingham et
al. (2015), is to use the concept of temporary equilibrium. This approach assumes that firms have stationary
expectations of future prices of emissions permits; firms expect that the permit prices tomorrow will be the
same as today. Under this expectation, the equilibrium prices of permits are computed such that the markets
are cleared in every period. The other approach, followed by Krusell and Smith (1998), parameterizes the
expectation of future permit prices as a function of a small set of “sufficient statistics,” such as the aggregate
demand shock, cost shock, and permit prices in the current period. It then determines the parameters of the
expectation process that yield the smallest excess demand of emissions permits across periods. The drawback
of this approach is that, although consumers have expectations about future permit prices that are consistent
with realized prices, the market clearing may not be satisfied in a given period.
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4 Estimation Strategy

This section explains the estimation strategy for the model. An estimation follows three steps.

First, I obtain the profit function πit({qjt, ρjt}j) by estimating the convex cost of production

g(q, k) and the Hedonic function for coal price pfuel(R) without solving the dynamic decision

problem. I will explain the details in estimation of g(q, k) in section 4.1. Appendix B discusses

estimation of the Hedonic function.

Using the estimated profit function πit({qjt, ρjt}j), I then estimate the other model pa-

rameters in Section 4.2, including the variable transaction costs TC(b), the distribution of the

fixed transaction costs Fit, the continuation value at the terminal period CVT+1(hi,T+1, R
2
i ),

and the costs of abatement investment Γ(R̄ − R). I use a simulated nonlinear least squares

approach, in which I numerically solve the individual dynamic decision problems to match

the model prediction with its empirical counterpart. Note that I fix the annual discount

factor at β = 0.95 throughout this paper. Lastly, I estimate the fringe demand B̄fringe
t (Pt)

in Section 4.3.

Identification Identification of the model relies on optimality conditions related to firms’

decisions and detailed information on production and permit transactions. First, I use pro-

duction data before and after the introduction of the cap-and-trade program to obtain the

firm-level profit function from the electricity production. The profit function implies the

marginal profit from emissions across firms. Without variable transaction costs, the marginal

profits should be equalized across firms and equal to the permit price. Variable transaction

costs are identified from how the marginal profits vary with the trading volume. Firm-level

participation in permit trading is employed to identify the sunk costs of participation. Finally,

I identify the costs of investment using the optimality condition for investment decisions.

4.1 Step 1: Estimation of the Profit Function

The purpose of step 1 is to estimate “offline” the profit function π(), which will be embedded

in step 2. Here, I focus on estimating the convex cost function g(q, k). I parameterize the

function as

g(qjt, kj) =
kj
2γ

(
qjt
kj

)2

, (4.1)

which mimics the specification used in Ryan (2012).

I utilize the FOC for the unit-level production quantity qjt, given by (3.6). Specifically,

the FOC yields the following linear equation:

cfjt = γ
(
τ elect − cfueljt − λitρjt

)
,

where cfjt ≡ qjt/kj is the capacity factor. This model captures the relationship between the

capacity factor and the markup of electricity production, τ elect − cfueljt − λitρjt.
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In the empirical implementation, I use monthly level observations instead of yearly obser-

vations. In addition, the sample includes generation units that are not affected by the Acid

Rain Program. For example, the sample includes observations before 1995 (i.e., before the

ARP started), as well as observations for units that were not regulated at a particular time

point (e.g., observations of Group II units before 2000). To accommodate these observations,

I consider the following form of the regression equation, indexed by month m:

cfjm = γ
(
τ elecm − cfueljm − 1{SO2reg}jt · λitρjt

)
+ uj + um + ujm, (4.2)

where uj is a unit fixed effect, um denotes the time fixed effects, and ujm is an error term.

The dummy variable 1{SO2reg}jt takes the value one if unit j is under the ARP in year t.

In equation (4.2), I observe output price τ elecjm , fuel costs cjt, and emissions rate per

production ρjt in the right-hand-side . However, I cannot directly observe the firm-level

shadow costs λit, which are determined endogenously in the model. To solve this problem,

I proxy λit using the optimality conditions implied from the model in the spirit of Olley

and Pakes (1996). The model implies that λit can be written by some unknown function

of the state variables, i.e., λit = G(hit + ait, Iit, Rit). I approximate this function using the

second-order polynomial;

λit = θ1 log(hit + ait) + θ2Iit + θ3 logRit + θ4 {log(hit + ait)}2 + θ5 {logRit}2

+θ6Iit · log(hit + ait) + θ7Iit · logRit + θ8 logRit · log(hit + ait)

I substitute this equation into equation (4.2) and estimate the resulting linear equation.

4.2 Step 2: Estimation of Remaining Parameters

The estimation in step 1 yields the profit function πit ({qjt}j) . The next step is to estimate the

remaining parameters, including the transaction costs, continuation value, and investment

costs. I first provide specifications for these primitives.

My model contains two type of transaction costs: variable costs and participation costs.

The variable transaction cost function TC(|b|) is specified as follows:

TC(|b|) =
1

2
exp

(
ηbuy0 1{b > 0}+ ηsell0 1{b < 0}+ η1 log(sizei)

)
b2, (4.3)

where sizei denotes firm i’s size, measured by the sum of the generation capacity of firm

i. I allow a firm’s size to affect the level of transaction costs. Furthermore, I allow for the

possibility that transaction costs can vary depending on the firm that is buying or selling

permits, with ηbuy0 and ηsell0 .

The participation cost Fit is specified as

Fit = F + εit, (4.4)

28



where εit follows an i.i.d. type-I extreme-value distribution, with standard deviation σF .

Here, sizei denotes the size of firm i, measured as the sum of the generation capacity of firm

i.

I consider the following parameterization of the continuation value in the terminal period:

CV (hi,T+1, R
2
i ) = exp

(
α0 + α1 log(sizei) + α2R

2
i

)
hα3
i,T+1. (4.5)

The coefficient depends on the firm size, sizei, and on the emissions rate in Phase II, R2
i .

These variables capture the heterogeneity in the incentives to bank in the terminal period.

The specification for the investment cost Γ(·) is given by

Γ(R̄−R) =
exp(ζ0 + ζ1 log(Ki,τ ))

2
(R̄−R)2, (4.6)

where Ki,τ is the generation capacity of the units regulated in Phase τ ∈ {I, II}. The

parameters estimated in this step are summarized as θ = (η0, η1, F, σF , α0, α1, α2, α3, ζ0, ζ1).

The estimation procedure builds on the literature of estimation of dynamic structural

models in industrial organization and labor economics.33 I use a simulated nonlinear least

squares approach to estimate the model parameters. For a given candidate of parameter θ,

I solve the model to obtain the prediction of choice variables and match the prediction with

the data. Here, I do not have to solve for a dynamic competitive equilibrium to obtain a

model prediction because I can use the observed prices of emissions permits as a sequence

of equilibrium prices. The observed prices are used to solve the single-agent optimization

problems, which are much easier to solve than the dynamic competitive equilibrium.34

The procedure for obtaining the model prediction is as follows:

1. Fix a candidate of parameter θ and the observed permit prices {Pt}2003
t=1995.

2. For each firm i, solve the optimization problem by backward induction and obtain the

policy functions.

3. Using the policy functions, simulate the optimal decisions for each pattern of partici-

pation in permit trading. Denote the year of participation by s ∈ {∅, 1995, · · · , 2003},
where s = ∅ means that the firm does not trade in that period. Denote the optimal

decision for pattern s by x̂it(s).

4. Calculate the probability that each pattern of participation timing is realized. Denote

this probability by Probenterit (s).

33See Aguirregabiria and Mira (2010) for a survey of this literature.
34This empirical strategy is similar in spirit to that in the two-step estimation of a dynamic game, in which

the equilibrium objects are recovered directly from the observed data. For example, Aguirregabiria and Mira
(2007) estimate players’ beliefs over other players’ policies from the observed data. Then, they solve the
optimal response of a player, given the estimated beliefs, to construct the pseudo-likelihood function.
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5. Then, the prediction for firm i in year t is given by

x̂it =
∑

s∈{∅,1995,··· ,2003}

Probenteri (s)x̂it(s). (4.7)

Using the simulated choices, I calculate the objective function. The objective function mea-

sures the distance between the prediction and the data at the firm and year levels:

J(θ) =
N∑
i=1

(
xdatai − x̂i(θ)

)′
Ωi

(
xdatai − x̂i(θ)

)
,

where xdatai is a vector of endogenous variables, and x̂i(θ) is the corresponding vector for the

model prediction, given parameter θ. The vector xdatai includes the emissions, net purchases,

and permit banking in each year, as well as a dummy variable that indicates whether firm

i participates in the permit market. The weighting matrix Ωi is a diagonal matrix used to

adjust for differences in scaling.

Standard errors are calculated using the bootstrap method at the firm-history level. I

randomly draw samples of 114 firms, with replacement, and construct 40 bootstrap samples.

4.3 Step 3: Estimation of Fringe Demand

I now estimate the fringe demand function. I consider the following specification, with con-

stant elasticity:

log
(
−B̄fringe

t

)
= φ0 + φ1 logPt + φ2Phase2t + et, (4.8)

where Phase2t is the dummy for Phase II. I take the negative of B̄fringe
t , because B̄fringe

t < 0

for all years; that is, fringe firms are net sellers of permits. I estimate the model using the

sum of the initial allocations for the firms in my sample as an instrument for Pt.

5 Estimation Results

Table 3 presents the parameter estimates of the structural model. The model incorporates

two types of transaction costs: participation and variable costs. With regard to the variable

transaction costs, the coefficient on the firm size is negative but small. This result implies

that, although bigger firms tend to have lower transaction costs, the heterogeneity across

firms is negligible. Based on the parameter estimates, I calculate the marginal transaction

cost, given by exp(η0 +η1 log(sizei))|bit|. The mean of the costs is USD 52.6, and the median

is USD 36.1. Considering that the permit prices range between USD 100 and USD 200, these

numbers are substantial. This estimate indicates the large dispersion of the shadow value of

emissions across firms, implying an inefficient outcome of the cap-and-trade in the baseline.
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The mean and the standard deviation of the participation costs is around USD 0.45

million and USD 2.67 million, respectively. The estimated parameters in the continuation

value function at the terminal period imply that bigger and cleaner firms obtain a higher

value from banking, though the coefficients are small and imprecisely estimated. Estimates

of the investment cost have reasonable signs. The bigger the capacity, the higher are the

investment costs. Finally, the fringe elasticity is estimated to be 1.34.

Table 3: Parameter Estimates

Parameter Description Estimate Standard Errors

Convex Production Costs g(·) γ Curvature 0.000647 0.000131

Variable Costs TC(·) ηbuy0 Constant for buying -4.214 1.653
ηsell0 Constant for selling -3.958 1.135
η1 Firm size -0.068 0.063

Participation Costs Fit F Mean (USD 1 million) 0.455 0.200
σF Std. Dev. (USD 1 million) 2.673 2.266

Continuation Value CVT+1(·) α0 Constant 3.482 1.872
α1 Firm Size 0.097 0.186
α2 Emissions Rate -0.046 0.270
α3 Curvature 0.051 0.095

Investment Costs Γ(·) ζ0 Constant 9.504 3.794
ζ1 Capacity 0.838 0.352

Fringe Demand B̄t(·) φ0 Constant 5.281 14.399
φ1 Elasticity 1.335 2.991
φ2 Phase II dummy 0.902 1.000

6 Counterfactual Experiments

This section provides a series of counterfactual exercises using the estimated model. I first

quantify the first-best outcome of cap-and-trade by eliminating transaction costs (Section

6.1). Then, I evaluate the impact of the permit banking system in Section 6.2. Appendix F

explains how to simulate the equilibrium outcome in each case.

6.1 The Potential Gains from Trade

I first simulate the outcome if the regulator introduced a centralized exchange for emissions

permits that eliminates all transaction costs. Such a case is the first-best outcome in terms of

abatement costs. By comparing the first-best outcome with the baseline outcome, I evaluate
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how well the cap-and-trade program works in the baseline.35

As discussed in Section 3.7, transaction costs lead to an inefficient outcome in a cap-and-

trade program. The estimates of the model parameters suggest that the variable transaction

costs are substantial, implying the large dispersion of the shadow value across firms. In this

simulation, I set both participation and variable transaction costs to zero, and then solve the

market equilibrium.

This simulation quantifies the distortion of the firm’s decisions due to the presence of

transaction costs in permit trading. I first explain its effect on permit banking. Figure 6

plots the aggregate level of permit banking in each year, with and without transaction costs.

Figure 6 indicates the excess permit banking in the baseline case, which is consistent with

the concern argued by Smith et al. (1998). Under the presence of transaction costs, firms

are less active in permit trading and, thus, prefer to save emissions permits. However, such

an incentive would lower the allocative efficiency of emissions permits because the banked

permits should be used by those who have a higher willingness to pay, namely buyers.

Figure 7 plots the distributions of emissions rates in the case without transaction costs

and the baseline case. The distribution is more dispersed in the absence of transaction costs

than in the baseline. Eliminating transaction costs makes firms trade more actively, making

them more flexible in their compliance. Firms that find it costly to reduce their own emissions

are more likely to purchase emissions permits, whereas other firms invest more because their

revenue from selling permits increases once transaction costs are removed.

How do these distortions translate into efficiency measures? Table 4 shows the efficiency

measures of the equilibrium outcome with and without transaction costs. With regard to the

abatement costs for firms, the table shows that the costs would be lower by USD 2.7 billion,

in total, or 25.4%. Although this partially reflects the higher level of aggregate emissions

in the absence of transaction costs, the average cost of abatement is also lower, by USD 41

per SO2 tons, or 18.9%. This finding indicates that the “potential” gains from trade, which

could be achieved in the absence of transaction costs, are significant.

Implications on Net-benefit I also calculate the net-benefit of a cap-and-trade program.

To do so, I calculate health and environmental damages in each case in Table 4 using the

data from Muller and Mendelsohn (2009).36 Health and environmental damages increase by

USD 6.3 billion in the absence of transaction costs. This increase reflects both the increase in

the aggregate level of SO2 emissions, as well as the increase in the average health damages.

35The baseline is defined as the equilibrium outcome under the estimated model where transaction costs are
present.

36Muller and Mendelsohn (2009) use the AP2 model, an integrated assessment model, to calculate marginal
damages from SO2 emissions at the county level. I use the marginal damages from point sources with effective
height less than 250 meters (denoted as low point sources). Following Muller and Mendelsohn (2009), I assume
that damages are linear in SO2 emissions. The emissions damage from a particular county is given by the
product of the marginal damage and the total SO2 emissions from electricity plants located in the county.
See, e.g., Fowlie and Muller (2013) and Chan et al. (2015) for other attempts that calculates health and
environmental damages of air pollutants using the AP2 model.
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In particular, the average health damages increase by 1.5%, indicating that more active

trading of emissions permits leads to greater emissions in regions where the health damage

is higher.37 In summary, the total costs (including firms’ costs of abatement and health

damages) increased by USD 3.6 billion (4.9%) in the absence of transaction costs.38

Figure 6: Permit Banking in the Absence of Transaction Costs
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Figure 7: Distribution of Emissions Rate in the Absence of Transaction Costs
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Notes: Emissions rate is measured by lbs per MMBtu.

37SO2 emissions are known as nonuniformly mixed pollution; health and environmental damages depend on
the location of the emissions’ source.

38Note that the negative net effect of eliminating transaction costs is mostly driven by the fact that the
health and environmental damage is much higher than the abatement cost under the regulatory intensity (i.e.,
emissions cap) in the Acid Rain Program. This fact motivates the further reduction of SO2 emissions proposed
in the subsequent regulations after 2003 (see, e.g., Schmalensee and Stavins, 2013).
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Table 4: The Potential Gains from Trade

Baseline No Transaction Costs

Emissions (in 1 million tons) 53.20 57.68
Banking at the terminal period (in 1 million tons) 2.04 1.52

Abatement costs (in USD 1 million) 10,663 7,951
Change from baseline (in USD 1 million) -2,711
Average abatement cost (in USD) 217 178

Health and environmental damages in USD 1 million) 63,297 69,656
Change from baseline (in USD 1 million) 6,359
Average damage (in USD) 1,190 1,208

Notes: The numbers are the total from 1995 to 2003. The unit of emissions and banking at
the terminal period is 1 million SO2 tons. Abatement cost is defined as the sum of investment
costs and the profit loss due to the regulation. The latter is the difference between the realized
profit and the business as usual (BAU) profit. The BAU is defined as the case in which the
shadow value of permits λit is 0 and firms do not change emissions rate at all. The average
abatement cost is the ratio of total abatement costs to the total abatement, which is defined
as the difference between the actual and the BAU emissions.

6.2 The Role of the Permit Banking System

A key feature of the Acid Rain Program is the permit banking system and the pre-announced

schedule of permit allocation which decreased from Phase II (2000). While the regulated firms

utilized permit banking in their compliance strategies, the simulation analysis in the previous

section shows an excess banking of permits, which contributes to less trading of permits and

lower allocative efficiency. Here, I examine the effects of the permit banking system, given

the presence of transaction costs. I simulate an equilibrium outcome in which permit banking

between Phases I and II is not allowed. In other words, firms cannot carry over emissions

permits from 1999 to 2000, but they can bank in other years. This setting mimics the

institutional setting of the EU–ETS.39

Table 5 shows the firm- and year-level simulation outcomes in the baseline and no-banking

cases. The trading volume, defined as the absolute value of net purchases, |bit|, is higher by

26.8% in the absence of permit banking than in the baseline case, implying that permit

trading is more active without banking. When banking is not allowed, firms have a greater

incentive to trade. Because firms cannot rely on their banked permits for compliance, they

have to buy permits from other firms. Furthermore, sellers have to discard their emissions

permits, unless they participate in permit trading to sell.

Though more active trading of emissions permits could lead to an efficient reallocation

of emissions permits, permit banking allows firms to smooth the abatement between phases.

39In the EU–ETS, permit banking between Phase 1 (2005–07) and Phase 2 (2008–12) was not allowed.
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Given that the initial allocation of permits changes significantly between Phase I and Phase II,

the smoothing role is, presumably, important. To see the net effect of permit banking, Table 6

shows the efficiency measures in both cases.40 The total abatement costs are estimated to be

USD 11.3 billion without the permit banking system. I also calculate the average abatement

cost, which is 2.8% higher than that in the baseline case. This result indicates that a permit

banking system improves the cost efficiency of the cap-and-trade program, on aggregate.

The simulations in Sections 6.1 and 6.2 highlight the interaction of transaction costs and

dynamic incentives. In particular, in the presence of transaction costs, a permit banking

system might have subtle and counteracting implications for efficiency. The permit banking,

on one hand, allows a firm to smooth costs over time, improving its inter-temporal efficiency.

However, it discourages the trading of permits, reducing the firm’s intra-temporal allocative

efficiency.

Given this trade-off, a policy design that can improve the outcome is “depreciating per-

mits,” which is akin to the “depreciating license” mechanism of Weyl and Zhang (2018).

Under the depreciating permits system, a certain fraction of banked permits is collected by

the regulator at the end of the period, and then reallocated through auctions. As a result,

firms have a greater incentive to trade in the market, owing to the depreciation, but can still

smooth their abatement costs over time using permit banking.

Table 5: Simulation Outcomes at the Firm-and-year Level

Baseline No Banking
Mean Std. Dev Median Mean Std. Dev Median

Emissions eit 76,992.2 100,173.9 44,791.3 74,954.6 98,889.5 44,232.7
Net purchase bit 2,609.0 9,794.4 -158.4 2,846.6 12,454.1 -589.7
Trading volume |bit| 6,454.5 7,811.9 4,147.2 8,183.4 9,805.9 5,238.5
Left-over permits 3,230.2 24,815.5 0.0

7 Conclusion

This study examines the dynamic incentives of firms regulated by a cap-and-trade program

in the context of SO2 emissions regulations in the US electricity industry. I construct a

dynamic equilibrium model of a cap-and-trade program, in which firms make decisions on

abatement investment, permit trading, and banking. I apply the model to data from the US

Acid Rain Program and estimate the model primitives. My estimates suggest that the vari-

able transaction costs associated with permit trading are substantial. Through a simulation

40The aggregate emissions are different from the baseline case owing to the presence of leftover permits.
Around 4% of permits would expire if a permit banking system were not available. Note that emissions permits
might expire for two reasons. First, if a firm does not participate in permit trading, it cannot sell permits
and, thus, the remaining permits must expire. Even though the firm participates, the marginal revenue from
selling permits could be less than zero, owing to transaction costs. In such a case, firms do not sell all of their
remaining permits.
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Table 6: Effects of Permit Banking

Baseline No Banking

Emissions (in 1 million tons) 53.20 51.79
Left-over permits (in 1 million tons) 0.00 2.23
Banking at the terminal period (in 1 million tons) 2.04 1.52

Abatement costs (in USD 1 million) 10,663 11,287
Change from baseline (in USD 1 million) 624
Average abatement cost (in USD) 217 223

Health and environmental damage (in USD 1 million) 63,297 62,057
Change from baseline (in USD 1 million) -1,240
Average damage (in USD) 1,190 1,198

Notes: The numbers are the totals from 1995 to 2003. The units for emissions, left-over
permits, and banking at the terminal period are 1 million SO2 tons. See the notes in Table
4 for the definition of the abatement costs.

analysis, I find that the average costs of abatement could be reduced by 18% in the absence

of transaction costs. This additional cost saving is achieved by more active trading of permits

and a more efficient allocation of investment. I also examined the role of a permit banking

system, finding that it helps firms to smooth their abatement costs across periods, although

it could discourage the trading of permits.

The proposed framework can be applied beyond a cap-and-trade program on air pol-

lutants. Governments now use a market-based policy in various settings, including credit

trading in the CAFE regulation and Renewable Energy Certificates in the Renewable Portfo-

lio Standard (RPS). Under these policies, firms face a similar problem to that examined here:

they can either trade these credits, or invest in technology (i.e., improve fuel efficiency in

the CAFE credit trading, or build renewable generators in the RPS program). The proposed

empirical framework can be used to study the effectiveness of these market-based policies

and the implications of alternative regulatory designs. I leave these topics for future work.

References

Aguirregabiria, Victor and Pedro Mira, “Swapping the nested fixed point algorithm:

A class of estimators for discrete Markov decision models,” Econometrica, 2002, 70 (4),

1519–1543.

and , “Sequential estimation of dynamic discrete games,” Econometrica, 2007, 75 (1),

1–53.

36



and , “Dynamic discrete choice structural models: A survey,” Journal of Econometrics,

2010, 156 (1), 38–67.

Arimura, Toshi H, “An Empirical Study of the So2 Allowance Market: Effects of PUC

Regulations,” Journal of Environmental Economics and Management, 2002, 44 (2), 271–

289.

Bajari, Patrick, C Lanier Benkard, and Jonathan Levin, “Estimating Dynamic Mod-

els of Imperfect Competition,” Econometrica, 2007, 75 (5), 1331–1370.

Breen, William J, Laurie Simon Hodrick, and Robert A Korajczyk, “Predicting

equity liquidity,” Management Science, 2002, 48 (4), 470–483.

Cantillon, Estelle and Aurelie Slechten, “Price formation in the European carbon mar-

ket: the role of firm participation and market structure,” Working Paper, 2015.

Carlson, Curtis, Dallas Burtraw, Maureen Cropper, and Karen L Palmer, “Sulfur

dioxide control by electric utilities: What are the gains from trade?,” Journal of political

Economy, 2000, 108 (6), 1292–1326.

Chan, H Ron, B Andrew Chupp, Maureen L Cropper, and Nicholas Z Muller,

“The Impact of Trading on the Costs and Benefits of the Acid Rain Program,” Technical

Report, National Bureau of Economic Research 2015.

Chan, Ron, “How Large are the Cost Savings from Emissions Trading? An Evaluation of

the U.S. Acid Rain Program,” Working Paper, 2015.

Chen, Cuicui, “Slow focus: Belief evolution in the US acid rain program,” Technical Report,

Working Paper 1–49 2018.

Cicala, Steve, “When Does Regulation Distort Costs? Lessons from Fuel Procurement in

US Electricity Generation,” American Economic Review, 2015, 105 (1), 411–44.

Coase, Ronald H, The problem of social cost, Springer, 1960.

Collard-Wexler, Allan, “Demand Fluctuations in the Ready-Mix Concrete Industry,”

Econometrica, 2013, 81 (3), 1003–1037.

Dardati, Evangelina, “Pollution Permit Systems and Firm Dynamics: How does the Allo-

cation Scheme Matter?,” Working Paper, 2014.

Dávila, Eduardo and Cecilia Parlatore, “Trading Cost and Informational Efficiency,”

2017.

EIA, “Electric Power Annual 2012,” Technical Report 2012.

37



Ellerman, A Denny and Juan-Pablo Montero, “The efficiency and robustness of al-

lowance banking in the US Acid Rain Program,” The Energy Journal, 2007, pp. 47–71.

, Paul L Joskow, Richard Schmalensee, Juan-Pablo Montero, and Elizabeth M

Bailey, Markets for clean air: The US Acid Rain Program, Cambridge University Press,

2000.

Ericson, Richard and Ariel Pakes, “Markov-perfect industry dynamics: A framework

for empirical work,” The Review of Economic Studies, 1995, 62 (1), 53–82.

Fabra, Natalia and Mar Reguant, “Pass-Through of Emissions Costs in Electricity Mar-

kets,” American Economic Review, 2014, 104 (9), 2872–99.

Fowlie, Meredith, “Allocating emissions permits in cap-and-trade programs: Theory and

evidence,” Working Paper, 2010.

, “Emissions trading, electricity restructing, and investment in pollution abatement,” The

American Economic Review, 2010, pp. 837–869.

and Jeffrey M Perloff, “Distributing pollution rights in cap-and-trade programs: are

outcomes independent of allocation?,” Review of Economics and Statistics, 2013, 95 (5),

1640–1652.

and Nicholas Muller, “Market-based emissions regulation when damages vary across

sources: What are the gains from differentiation?,” Technical Report, Working Paper 2013.

, Mar Reguant, and Stephen P Ryan, “Market-based emissions regulation and indus-

try dynamics,” forthcoming in Journal of Political Economy, 2014.
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Appendix For Online Publication

A Difference-in-differences Analysis on Utilization Rate

To estimate the effects of the ARP on production output, I exploit the variation of the timing

of the regulation across units in a Difference-in-differenes (DID) framework. There are two

groups of units: those regulated since 1995 (Group I units), and those regulated since 2000

(Group II units). I plot the trend of the capacity factor for each group’s units in Figure A.1,

which supports the parallel-trend assumption in the DID framework.

The regression equation is given by

cfjm = α1GroupIj · 1{after1995}m + α2GroupIIj · 1{after2000}m + γXjm + uj + um + ujm,

where cfjm is the capacity factor of unit j in month-year m. The capacity factor is defined

by cfjm = qjm/kj , where qj is the net generation and kj is the nameplate capacity. GroupIj

and GroupIIj are dummy variables for each group. 1{after1995}m and 1{after2000}m are

dummy variables indicating the periods after 1995 (the beginning of Phase I) and 2000 (the

beginning of Phase II), respectively. Xjm includes control variables such as fuel costs. Unit

and time fixed effects are captured by uj and um, respectively.

The regression results are shown in Table A.1. I find that introducing the ARP decreases

the capacity factor by 1 to 2.5 percentage points, which is statistically significant. This finding

is consistent with the idea that introducing a cap-and-trade program increases the marginal

costs of production, because firms are facing opportunity costs of emissions under such a

program. Thus, the increase in marginal costs decreases the output of generating units under

a cap-and-trade regulation. Although the effects are statistically significant, the economic

significance of the effects seems to be limited. Because the mean of the capacity factor is

within the range of 40–60 percentage points in the sample, electricity generation decreased

by around 2%–6% after the introduction of the cap-and-trade program. This magnitude is

not as great as the decrease in emissions over time, as shown in Section 2.3.1. Combined

with the findings from Section 2.3.2, this regression analysis indicates that the abatement of

SO2 emissions was achieved primarily through the adjustment of emissions rates.
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Figure A.1: Trend of Capacity Factor of Group I and Group II units

1990−1994 

 (No regulation)

1995−1999 

 (Only Group I units)

2000−2003 

 (Both regulated)

Group I units

Group II units

40

50

60

70

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

C
ap

ac
ity

 fa
ct

or
 (

pe
rc

en
ta

ge
 p

oi
nt

)

Notes: The figure shows the trend of the capacity factor, defined by the ratio of net generation
(output) to generation capacity, over time. I calculate the mean of the monthly level capacity
factor in each year for two groups: those regulated since 1995 (Group I units), and those
regulated since 2000 (Group II units). The figure shows that these two groups have a similar
trend in their capacity factor from 1990 to 1994, supporting the parallel-trend assumption in
the DID framework.

Table A.1: Difference-in-differences Regression of Capacity Factor
Dependent variable:

Capacity factor in pct-point (0 to 100)

(1) (2) (3) (4)

Treatment (Group I) −0.506 −1.920∗∗∗ −2.000∗∗∗ −2.900∗∗∗

(0.571) (0.657) (0.569) (0.691)

Treatment (Group II) −3.802∗∗∗ −2.456∗∗∗ −2.636∗∗∗ −1.865∗∗∗

(0.542) (0.580) (0.565) (0.613)

log(fuel costs) −10.004∗∗∗ −9.959∗∗∗

(0.458) (0.459)

log(electricity demand) 38.703∗∗∗ 38.742∗∗∗ 41.937∗∗∗ 41.937∗∗∗

(1.052) (1.053) (1.162) (1.164)

Group-trend No YES No YES
Observations 373,934 373,934 278,956 278,956
Adjusted R2 0.674 0.674 0.612 0.612

Notes: Unit-level dummies, year dummies, and month-of-year dummies are included. Stan-
dard errors are clustered at the unit level. ∗p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01
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B Hedonic Regressions of Coal Price

This appendix explains the hedonic regressions of coal prices. I use the estimation results

to obtain the fuel costs cjt in the profit function as a function of the SO2 emissions rate

Rjt. I use the data from the Form FERC No. 423 (EIA-423) “Monthly Report of Cost and

Quality of Fuels for Electric Plants” for the estimation. This data reports plant- and month-

level information on fuel procurement, including fuel type, sulfur content, heat content, and

purchase costs.

I consider the following hedonic function, which describes the coal price pfuelk,l,m in fuel

delivery k for plant l in month-year m:

pfuelk,l,m = exp(φm + φt + φr + ul,k,m) (Rk,l,m)φ

⇐⇒ log(pfuelk,l,m) = φ log(Rk,l,m) + φm + φt + φr + ul,k,m,

where pfuelk,l,m is the coal price, measured in cents per MMBtu, and Rk,l,m is the SO2 emissions

rate, measured in lbs per MMBtu. φm, φt, and φr are the fixed effects for a month, year, and

region, respectively.41

Note that I only include the SO2 emissions rate Rk,l,m, along with time and region dum-

mies, as covariates. Other product characteristics, such as ash content and the distance

between plants and coal mines, are available in the data set and are used by other studies

in regressions (See, e.g., Chan, 2015). However, the primary purpose of this regression is to

predict how the choice of an SO2 emissions rate affects the coal price. Because the other

product characteristics could change with the choice of the SO2 emissions rate, it would be

erroneous to use a regression equation that includes other characteristics to predict how the

coal price would change with respect to the SO2 rate, holding other characteristics fixed.

Therefore, I use the function with respect to the emissions rate Rl,k,m to predict the coal

price.

Table B.2 reports the results of coal price regression.

41I use the definition of US regions provided by the US Census Bureau. There are four regions: Northeast
(CT, ME, MA, NH, RI, VT, NJ, NY, PA), Midwest (IL, IN, MI, OH, WI, IA, KS, MN, MO, NE, ND, SD),
South (DE, DC, FL, GA, MD, NC, SC, VA, WV, AL, KY, MS, TN, AR, LA, OK, TX), and West (AZ, CO,
ID, MT, NV, NM, UT, WY, AK, CA, HI, OR, WA).
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Table B.2: Hednic Regression

Dependent variable:

log(fuel price)

log(emissions rate) −0.049∗∗∗

(0.004)

Observations 304,470
Adjusted R2 0.205

Notes: Estimates of month, year, and region dummies are omitted. Robust standard errors
are used. *p<0.1; **p<0.05; ***p<0.01.

C Details on Model Derivations

This appendix explains the derivation of the ex ante value function and its derivative,

∂EVt(ht, It)/∂ht. Remember that the ex ante value functions are given by

EVit(hit, Iit, Rit) =


∫

max
{
V 0
it(hit, Rit), V

1
it(hit, Rit)− (F + ε)

}
dG(ε) if It = 0

V 1
it(hit, Rit) if It = 1.

Note that under the assumption that ε follows an i.i.d. type-I extreme value distribution

with standard deviation σF , which I impose in the estimation, the expected value function

when Iit = 0 can be written as

EVit(hit, Iit = 0, Rit) = σF log

[
exp

(
V 0
it(hit, Rit)

σF

)
+ exp

(
V 1
it(hit, Rit)− F

σF

)]
.

By applying the Williams–Daly–Zachary theorem and the envelope theorem, the deriva-

tive of the expected value function with respect to the state variable hit can be expressed as

follows:

dEVt(hit, 0, Rit)

dhit
= Pit(hit, Rit)λ1

it + (1− Pt(hit, Rit))λ0
it. (C.1)

dEVt(hit, 1, Rit)

dhit
= λ1

it, (C.2)

where λ1
it and λ0

it are the Lagrange multipliers on the constraints for permit transitions in

the optimization problems for traders and nontraders, respectively. I now provide a detailed

derivation of the above equations.
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The derivation of ∂EVt(ht, It, Rt)/∂ht I omit the index i for a firm for ease of exposition.

I focus on the derivation of ∂EVt(ht,0)
∂ht

. Recall that

EVt(ht, 0, Rt) =

∫
max

{
V 0
t (ht, Rt), V

1
t (ht, Rt)− Ft − ε

}
dG(ε).

By the chain rule, I have

dEVt(ht, 0, Rt)

dht
=
∂EVt
∂V 0

t

dV 0
t

dht
+
∂EVt
∂V 1

t

dV 1
t

dht
.

First, I derive ∂EVt
∂V k

t
for k = 0, 1. This is an application of the Williams–Daly–Zachary

theorem (see Theorem 3.1 in Rust, 1994). Using the interchange of integration and differen-

tiation, I have the following (I omit ht for ease of exposition in the following derivation):

∂EVt
∂V 1

t

=
∂

∂V 1
t

∫
max

{
V 1
t − Ft − ε, V 0

t

}
dG(ε)

=
∂

∂V 1
t

∫
Υ1

(V 1
t − Ft − ε)dG(ε) +

∂

∂V 1
t

∫
Υ0

V 0
t dG(ε)

=

∫
Υ1

∂

∂V 1
t

(V trade
t − Ft − ε)dG(ε) +

∫
Υ0

∂

∂V 1
t

V 0
t dG(ε)

=

∫
Υ1

dG(ε)

= Pt(·),

where Υ1 is the set of ε such that a firm chooses to participate (i.e., Υ1 ≡ {ε : V 1
t − Ft − ε >

V 0
t }), and Υ0 is defined similarly. Note that I can apply a similar derivation to obtain
∂EVt
∂V 0

t
= 1− P(ht).

Next, I calculate
∂V k

t
∂ht

, for k = 0, 1. The derivation is a direct application of the envelope

theorem (or the Benveniste–Scheinkman formula):

∂V k
t

∂ht
= λkt ,

where λkit denotes the Lagrange multipliers in the corresponding optimization problems. Thus,

I obtain

dEVt(ht, 0)

dht
= Pt(ht)λ1

t + (1− Pt(ht))λ0
t .

D Incentives in Abatement Investment

Here, I discuss how the incentive to invest in abatement is determined in the proposed model.

Using the envelope theorem, the marginal return from reducing the emissions rate R1 is given
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as follows:

−∂EV1995

∂R1
=

1999∑
t=1995

βt−1995

λit ·∑
j

HRjtq
∗
jt


+

1999∑
t=1995

βt−1995

∑
j

∂cjt
∂R1

q∗jt


+ β2000−1995 ∂

∂R1
Γ(R1 −R2).

The first component is the returns from reducing emissions evaluated at the shadow value

λit. The second component is the additional costs of using a cleaner fuel. Note that
∂cjt
∂R1 <

0, because fuel costs are higher for low-sulfur coals. The last component is the saving of

investment costs in Phase II by investment in Phase I.

The primary component in the return on investment is the first term. By reducing the

emissions rate, the firm can marginally reduce emissions by
∑

j HRjtq
∗
jt. This marginal

abatement is evaluated at the shadow value of λit. Thus, the return on investment is given

by the discounted sum of the returns on the marginal abatement. The path of shadow values

λit is key for the investment incentives. As discussed in Section 3.7, the shadow value λit and

equilibrium permit price Pt are affected by both permit banking and transaction costs.

E Computational Details on Solving the Model

Appendix E explains the computational procedure used to solve the structural model.

E.1 Decomposition of the Per-Period Problem

One of the choice variables in the individual dynamic decision problem is the unit-level

generation qjt, which appears in the profit function πit, given by equation (3.1), and the firm-

level emissions, eit =
∑

j ρjtqjt. Because each firm has multiple generation units, solving unit-

level production in a dynamic framework seems computationally demanding. To reduce the

computational burden, I decompose the per-period problem into the following two problems.

First, I consider the following optimization problem with respect to the unit-level generation

{qjt}j∈Jit , holding firm-level emissions eit fixed:

Πit(eit, {ρjt}j∈Jit) ≡ max{qjt}j∈Jit
πit ({qjt}j)

s.t.
∑
j∈Jit

ρjtqjt = eit.
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Πit(eit, {ρjt}j∈Jit) is the optimal profit as a function of the firm-level emissions eit. Note

that the FOCs for this subproblem are

τ elecst − c
fuel
jt − g′(qjt)
ρjt

= λsubit ∀j∑
j∈Jit

ρjtqjt = eit,

where λsubit is the Lagrange multiplier of the constraint on firm-level emissions in the above

problem.

I now use Πit(eit, {ρjt}j∈Jit) to consider the dynamic decision problem:

max
eit,bit,hi,t+1

Πit(eit, {ρjt}j∈Jit)− (Ptbit + TC(bit)) + βEVi,t+1(hi,t+1, 1, Ri,t+1)

s.t. eit + hi,t+1 = ait + hit + bit,

hi,t+1 ≥ 0.

Note that the choice variables are eit, bit, and hi,t+1, which is fewer than in the original

problem.

When I numerically solve the individual dynamic decision problem, I use two steps. First,

I construct Πit(eit, {ρjt}j∈Jit) using the unit-level FOC for production. I then use the pre-

computed Πit(eit, {ρjt}j∈Jit) to solve the individual dynamic decision problems.

E.2 Individual Optimization

I explain the computational procedure for solving an individual problem. For notational

simplicity, I omit the script i for a particular firm. Because the model has a finite period, it

can be solved by backward induction.

1. Phase II (2003 to 2000): I solve the optimization problem from 2003 to 2000. Note

that I use CVT+1(hT+1, R
2) as a continuation value in the terminal period 2003. By

solving using backward induction, I obtain the policy function x̂t(ht, It, R
2) for emis-

sions et, net purchase bt, and banking ht+1, and the expected value function in 2000

EV2000(h2000, I2000, R
2).

2. Investment decision for Phase II: I define the continuation value at the timing of making

the investment decision for Phase II by W2000(h2000, I2000, R
1). The decision problem is

given by

W2000(h2000, I2000, R
1) ≡ maxR2 EV2000(h2000, I2000, R

2)− Γ(R2, R1).

s.t. R2 ≤ R1
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By solving this problem, I obtain the investment policy function R2∗(h2000, I2000, R
1).

3. Phase I (1999 to 1995): I repeat the same procedure as that in step 1. Note that the

continuation value in the problem at t = 1999 is given by W2000(h2000, I2000, R
1).

4. Investment for Phase I: The problem is given by

max
R1

EV1995(0, 0, RP1)− Γ(R1, R0).

s.t.R1 ≤ R0

Note that h1995 = 0 and I1995 = 0 in 1995.

E.3 Computation of a Dynamic Competitive Equilibrium

The computational procedure for finding an equilibrium is parallel to the estimation procedure

introduced in Section 5.

1. Fix a candidate of permit prices: P = {Pt}2003
t=1995.

2. Solve the individual problem using backward induction and obtain the policy function

x̂it(hit, Iit, Rit) for emissions et, net purchase bt, and banking ht+1, participation proba-

bility Pit(hit, Rit), and the investment decisionsR1
i (hi1995, Ii1995) and , R2

i (hi,2000, Ii,2000, R
1
i ).

3. Consider the timing of market participation. Denote the year of participation by s ∈
{∅, 1995, · · · , 2003}. Here, s = ∅ means that a firm does not trade in a period.

4. For each path of participation timing, I simulate the optimal decisions using the policy

functions.

5. Calculate the probability that each path of participation timing is realized.

6. The simulated optimal decisions are given as

x̂it =
∑

s∈{∅,1995,··· ,2003}

Probenteri (s)x̂it(s).

7. Check the market-clearing condition as∑
i

b̂it(P) + B̄t
fringe

(Pt) = 0 ∀t = 1995, · · · , 2003.

8. Stop the iteration when the following condition is satisfied:

max
t=1995,··· ,2003

∣∣∣∣∣∑
i

b̂it(P) + B̄t
fringe

(Pt)

∣∣∣∣∣ < 1000.
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Note that this criterion is sufficiently tight so that the absolute value of the price change

is in the order of magnitude of 1e-1.

9. If the above is not satisfied, repeat steps 1–7 with the updated price vector (explained

below), until the market-clearing conditions are satisfied.

Price Update Rule To update the price in each iteration, I construct the following heuris-

tic rule that exploits the market-clearing conditions and the optimality conditions. Denote

the current candidate of an equilibrium price vector by Pl = {P lt}2003
t=1995. The next candidate

of price in year t, P l+1
t , is given by solving the equation∑

i

∑
s

Pi,enter(s) · TC ′(−1)
(
λ̂it(P

l, s)− P l+1
t

)
+ B̄t

fringe
(P l+1

t ) = 0,

where λ̂it(P
l, s) is the prediction of the shadow value when the current price candidate is

Pl and the year of participation is s. Note that at the fixed point of this equation, where

Pl = Pl+1,

TC ′(−1)
(
λ̂it(P

l, s)− P lt
)

= bit(P
l, s),

such that the market-clearing conditions are satisfied in all periods.

I found that the computation procedure with this price update rule works quite well

in numerical simulations. The algorithm finds an equilibrium price vector in less than 10

iterations in most cases, though I do not have a formal proof of this property of the algorithm.

F Details in Counterfactual Simulations

F.1 Shutting Down Transaction Costs

I now consider the case with permit banking. In the absence of transaction costs, Rubin

(1996) has shown that the equilibrium path of permit prices grows at the rate of β−1, as long

as the aggregate banking is positive, which implies that

Pt+1 = β−1Pt

⇐⇒ Pt =β−(t−1)P1995 for t ∈ {1995, · · · , 2003}.

The optimal decision on emissions, given the emissions rate, is determined by ∂πit/∂qjt =

Pt ∀j. As discussed in Section 3.7, individual decisions on net purchases and banking are

not determined from the model, because the current shadow value λt = Pt is equal to the

discounted marginal value of banking βλt+1 = βPt+1 = Pt. In other words, banking and

trading decisions are arbitrary, as long as a firm can produce the level of emissions determined

by the optimality condition.
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Now, I consider the investment decisions. The continuation value at the beginning of

Phase II is given by

Vi,2000(hi,2000, R
2
i ) =

2003∑
t=2000

βt−2000
[
πit
(
{qjt}j , R2

i

)
− Ptbit

]
+ β2003−2000CV (hi,T+1)

=
2003∑
t=2000

βt−2000
[
πit
(
{qjt}j , R2

i

)
− Pt · (eit − ait)

]
+β2003−2000 {CV (hi,T+1)− PThi,T+1}

+

2003∑
t=2000

βt−2000Pthit +

2002∑
t=2000

βt−2000Pthit+1

=

2003∑
t=2000

βt−2000
[
πit
(
{qjt}j , R2

i

)
− Pt · (eit − ait)

]
+β2003−2000 {CV (hi,T+1)− PThi,T+1}+ P2000hi,2000,

where the last equality uses the equilibrium relationship βPt+1 = Pt. The investment problem

is

Wi,2000(hi,2000, R
1
i ) = maxR2

i
V2000(hi,2000, R

2
i )− Γ(R2

i , R
1).

s.t. R2
i ≤ R1

i .

Note that hi,2000 does not affect the optimal investment level of R2
i .

The continuation value at the beginning of Phase I is given as

V1995(hi,1995, R
1
i ) =

1999∑
t=1995

βt−1995
[
πit
(
{qjt}j , R1

i

)
− Pt(eit − ait)

]
+β1999−1995

(
βW2000(hi,2000, R

1
i )− P1999hi,2000

)
.

The investment problem is similar to that in Phase II.

Finally, I consider the market-clearing condition. By aggregating the transition equation

of permit holding (3.3) over individual firms and time, we have

2003∑
t=1995

Et(Pt) +HT+1 =

2003∑
t=1995

At +

2003∑
t=1995

Bt, (F.1)

where Et =
∑

i eit(Pt), and other uppercase variables are defined similarly. The market-
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clearing condition in each period is

Bt + B̄fringe
t (Pt) = 0.

By substituting this condition into equation (F.1), we have

2003∑
t=1995

Et

(
β−(t−1)P1995

)
+HT+1(β−(T−1)P1995) =

2003∑
t=1995

At +

2003∑
t=1995

−B̄fringe
t

(
β−(t−1)P1995

)
.

The equilibrium price P1995 is determined by this equation and, thus, so is the whole path of

the equilibrium price.

F.2 Model without Permit Banking between Phase I and II

I explain the case in which firms are not allowed to bank emissions permits between Phases

I and II. The decision problem is the same as that introduced in Section 3, except for 1999,

the last year of Phase I.

I first consider the problem for a trader in 1999. I omit the subscript i for simplicity. The

problem is given by

V 1
1999(h1999, It = 1, Rt) = max

{qjt}j ,bt
πt ({qjt}j)− (Ptbt + TC(bt)) + βW2000(0, I2000, R

1)

s.t. et ({qjt, ρjt}j) = at + ht + bt.

Note that permit banking h2000 is not part of the choice variables, and the continuation value

W2000(0, I2000, R
1) is evaluated at h2000 = 0. The optimality conditions of the problem are

given by equations (3.6) and (3.7).

Next, consider the case in which a firm is a nontrader:

V 0
1999(h1999, It = 0, Rt) = max

{qjt}j ,bt
πt ({qjt}j) + βW2000(0, I2000, R

1)

s.t. et ({qjt, ρjt}j) ≤ at.

In this case, a firm may not consume all its permits owing to capacity constraints of produc-

tion. The emissions level is given by

e∗t = min {at, emaxt } ,

where emaxt is the emissions level when a firm faces zero shadow costs of permits λt = 0.

Other components, including the participation and the investment decisions, are the same

as in the baseline case (i.e., the case that includes both permit banking and transaction costs).
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