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Critical capital stock in a continuous time growth model with a convex�concave

production function

Abstract: The critical capital stock is a threshold that appears in a nonconcave growth model, such

that any optimal capital path from a stock level below (above) the threshold converges to a lower (higher)

steady state. It explains history-dependent development and provides an implication for the achievement of

sustainable development. The threshold is rarely an optimal steady state and thus it is hard to characterize.

In a continuous time growth model with a convex�concave production function, we show that: a) the

critical capital stock is continuous and increasing in the discount rate; b) as the discount rate increases,

the critical capital stock appears from the zero stock level and disappears at a stock level between those of

the maximum average and maximum marginal productivities; c) at this upper bound, the critical capital

stock coalesces with the higher optimal steady state; d) once the critical capital stock disappears, the

higher steady state is no longer an optimal steady state; and e) the critical capital stock at the upper

bound can be arbitrarily close to either the stock level of the maximum average productivity or that of

the maximum marginal productivity, depending on the curvature of the utility function.

Keywords: Continuous time growth model, convex�concave production function, critical capital stock

JEL codes: C61; D90; O41
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1 Introduction

An aggregate growth model with a convex�concave production function is known to exhibit a complicated

dynamics: depending on the initial level of capital stock, the economy may advance to a higher steady

state or decline to a lower steady state. Such history dependence and polarization have been subjects in

several economic research strands and the model has a wide range of applications, including in economic

development (Azariadis and Drazen 1990, Askenazy and Le Van 1999, Hung, Le Van and Michel 2009, Le

Van et al. 2016), �rm dynamics (Davidson and Harris 1981, Hartl et al. 2004, Haunschmied et al. 2005,

Wagener 2005, Caulkins et al. 2010, 2015), public policy (Brock and Dechert 1983, Caulkins et al. 2001,

2005, 2006, 2007a, 2007b, Feichtinger and Tragler 2002, Feichtinger et al. 2002), international trade (Long

et al. 1997, Majumdar and Mitra 1995, Le Van et al. 2010), resource and environmental economics (Clark

1971, Dasgupta and Mäler 2003, Brock and Starrett 2003), and general theoretical studies (Majumdar

and Mitra 1982, 1983, Majumdar and Nermuth 1982, Dechert and Nishimura 1983, Amir et al. 1991,

Haunschmied et al. 2003, Wagener 2003, 2006, Dockner and Nishimura 2005, Kamihigashi and Roy 2006,

2007, Kiseleva and Wagener 2010). Deissenberg et al. (2004) provide a survey of this topic.

The threshold appearing in a nonconcave model is known as the critical capital stock.1 It may be

expected that the critical capital stock is an unstable steady state of the canonical system of Hamiltonian

di¤erential equations. This could be true if the model were a concave model with wealth e¤ects (Kurz

1968, Wirl and Feichtinger 2005), in which the unstable steady state is an optimal steady state. However,

the optimality is hardly expected in a nonconcave model because the production function is convex at

the steady state. In fact, su¢ cient conditions are known under which the unstable steady state is not

an optimal steady state (Dechert and Nishimura 1982, Askenazy and Le Van 1999). While the critical

capital stock has crucial implications for economic development, its characterization is di¢ cult and it has

not been well investigated.

Even the existence of the critical capital stock is not fully understood. As we will show, and as can be

1This threshold is also known as the Skiba point or the Dechert�Nishimura�Skiba point (Haunschmied et al. 2003)
because Skiba (1978) suggested its existence and Dechert and Nishimura (1983) proved that it exists in a certain range of
discount rates. Clark�s (1971) work on renewable resource management is potentially the earliest analysis of this critical
threshold. While Dechert and Nishimura (1983) used a discrete time model, Askenazy and Le Van (1999) proved its existence
in a continuous time model. See also Long et al. (1997) and Dockner and Nishimura (2005).
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intuitively understood, the critical capital stock exists if and only if the two steady states of the canonical

system at either side of the critical capital stock are optimal and stable. Therefore, the existence is related

to the optimality of steady states. In a nonconcave model, whether a steady state is optimal is not trivial

because Arrow�s su¢ ciency theorem is not applicable. It is a basic question, but it has not been well

addressed. Skiba (1978), one of the earliest studies indicating the critical capital stock, did not mention

the optimality of a steady state. Wagener (2003) developed a local criterion of the heteroclinic bifurcation

of the canonical system and showed that the bifurcation implies the existence of a critical capital stock.

Kiseleva and Wagener (2010) made a detailed bifurcation analysis in a nonconcave model called the shallow

lake model. While the validity of their analysis is clear on the phase diagrams, there is no formal proof

for the optimality of the solutions of the canonical system.

It is known that an interior stable steady state is optimal if the discount rate is less than or equal to

the maximum average productivity.2 However, with a larger discount rate, the optimality is ambiguous.

The only examples known are in discrete time models, which show that it may not be an optimal steady

state (Majumdar and Mitra 1982) and that it can be an optimal steady state (Dechert and Nishimura

1983). The demise of the optimality of the interior stable steady state has an important implication: an

unsustainable path toward the zero stock level becomes optimal for any stock level. Therefore, when it

occurs is important, but the identi�cation has not been addressed.

In this paper, we investigate these problems in a continuous time model. In a discrete time model,

Akao, Kamihigashi, and Nishimura (2012) proved the continuity and monotonicity of the critical capital

stock in the discount rate. We reproduce their results, but the proof is rather di¤erent as a result of the

di¤erences in Bellman equations between a continuous time model and a discrete time model. We also

provide further results. The critical capital stock increases in the discount rate, and there is a discount

rate at which the critical capital stock coalesces with the higher optimal steady state. With a higher

discount rate, the critical capital stock vanishes. Although the steady state remains, it is no longer

optimal. The upper bound of the critical capital stock can be arbitrarily close to either the stock of

the maximum average productivity or that of the maximum marginal productivity. In other words, the

2See Dechert and Nisimura (1983, Lemma 2) in a discrete time model and Askenazy and Le Van (1999, Proposition 7) in
a continuous time model.
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higher optimal steady state can lose optimality when the discount rate becomes slightly larger than the

maximum average productivity or it can remain optimal until the steady state of the canonical system

exists. Which of these occurs depends on the intertemporal elasticity of substitution for consumption.

The intuitive understanding is that with a low intertemporal elasticity, the consumption smoothing e¤ect

is strong and it prevents the optimal state path from going down toward the lower optimal steady state,

against increasing discount rates.

The remainder of the paper is organized as follows. Section 2 details the model and the assumptions.

Section 3 provides some preliminary results on the optimal paths. Section 4 shows the results concerning

the critical capital stock. Section 5 shows the relation between the curvature of the utility function and the

optimality of the upper steady state of the canonical system, using the constant intertemporal elasticity

of substitution (CIES) utility function. Section 6 concludes.

2 Model and assumptions

Consider the following continuous time optimal growth model:

V �(x0) := sup
c(t)

Z 1

0

u (c(t)) e��tdt (2.1)

subject to _x(t) = f (x(t))� c(t); c(t) � 0, x(t) � 0; x(0) = x0 > 0 given,

where c(t) is the consumption path, x(t) is the capital path, x0 is the initial capital stock, and � > 0 is the

discount rate. A path (x(t); c(t)) is called a feasible path from x0 if it satis�es the nonnegativity condition

in (2.1) and x(t) is a unique solution of the state equation with the initial value x0. Then, a feasible path

(x�(t); c�(t)) from x � 0 is optimal if there is no feasible path (x(t); c(t)) from x that satis�es:

Z 1

0

[u (c(t))� u (c�(t))] e��tdt > 0:

Throughout the paper, we use (x�(t); c�(t)) to denote an optimal path.

We make the following assumptions. Assumption 2 (b) below shows that the production function is
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convex�concave and the problem (2.1) is nonconcave.

Assumption 1: The utility function u : R+ ! R [ f�1g is twice continuously di¤erentiable on (0;1),

and satis�es u0(c) > 0, u00(c) < 0, and limc!0 u
0(c) =1.

Assumption 2: The production function f : R+ ! R+ is a twice continuously di¤erentiable function

with the following properties: (a) f(0) = 0, (b) there is an in�ection point xI such that f 00(x) ? 0 for

x 7 xI , (c) limx!0 f
0(x) > 0, (d) limx!0 f

00(x) exists, and (e) limx!1 f
0(x) = 0.

With these assumptions, Akao, Ishii, Kamihigashi, and Nishimura (2019) show the following:

Proposition 2.1 (Existence) (i) The problem (2.1) has an optimal path that is an interior path, (x�(t); c�(t)) >

0 for all t � 0. (ii) The optimal value function V � : R+ ! R [ f�1g is continuous and nondecreasing.

Proof. See Theorem 4.1, Proposition 2.1, and Proposition 2.2 in Akao, Ishii, Kamihigashi and

Nishimura (2019).

Remark: If Assumption 2 (e) is replaced with limx!1 f
0(x) < 0, which is typically used in renewable

resource economics, we have the same proposition as above and the same results shown in this paper by

restricting the state space to [0;max fxjf(x) � 0g]. For any initial stock and any feasible path, the capital

stock enters into this interval in a �nite time and stays there. In this sense, this restriction is innocuous.

If Assumption 2 (e) is replaced with limx!1 f
0(x) > 0, then the above proposition and the results shown

in this paper are valid when the discount rate satis�es � > limx!1 f
0(x).

We de�ne the two discount rates �0 and �I by:

�0 := lim
x!0

f 0(x) and �I := maxff 0(x)jx � 0g( = f 0(xI)). (2.2)

If � 2 (�0; �I), there are two positive stock levels that satisfy f 0(x) = �. We denote these by xs and xs,

respectively, where xs < xs, and we refer to them as the lower stationary capital stock and the upper

stationary capital stock, respectively. They are also denoted by xs(�) and xs(�) when we highlight the

fact that they are functions of �. We apply this same convention to the other variables.
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The Hamiltonian H : R3++ ! R and the maximized Hamiltonian H� : R2++ ! R associated with the

problem (2.1) are de�ned by:

H(c; x; q) := u(c) + q(f(x)� c); (2.3)

and H�(x; q) := max fH(c; x; q)jc � 0g ; (2.4)

respectively.

From Pontryagin�s maximum principle, an interior optimal path is a solution of the canonical system

of Hamiltonian di¤erential equations:

_x(t) = @H�(x(t); q(t))=@q = f(x(t))� u0�1(q(t)); (2.5a)

_q(t) = �q(t)� @H�(x(t); q(t))=@x = �[f 0(x(t))� �]q(t); (2.5b)

where u0�1 is the inverse function of u0, i.e., c = u0�1(q)() u0(c) = q.

Let:

�(c) := �cu
00(c)

u0(c)
: (2.6)

The following system of di¤erential equations:

_x(t) = f(x(t))� c(t); (2.7a)

_c(t) =
c(t)

�(c(t))
[f 0(x(t))� �]; (2.7b)

is equivalent to the canonical system (2.5). We refer to it as the x-c system and call a solution of the

system an x-c path.

Let:

cs := f(xs) and cs := f(xs): (2.8)

The steady states of the canonical system and the x-c system are (xs; u0(cs)); (xs; u0(cs)), and (xs; cs); (xs; cs),
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respectively. Corresponding to the lower and upper stationary capital stocks, these are called the lower

steady state and the upper steady state of these systems.

The Jacobian of the x-c system is given by:

J =

2664 f 0(x) �1

cf 00(x)=�(c) [d (c=�(c)) =dc] [f 0(x(t))� �]

3775 : (2.9)

When � 2 (�0; �I), the eigenvalues associated with the steady states are:

1

2

�
��

p
�2 � 4cf 00(x)=�(c)

�
; (2.10)

where (x; c) = (xs; cs); (xs; cs). Thus, (xs; cs) is unstable, whereas (xs; cs) is saddle-point stable.

The gain function (Kamihigashi and Roy 2006, 2007) is a useful tool to characterize an optimal path.

The continuous time version is de�ned by:


(x) := f(x)� �x: (2.11)

When � 2 (�0; �I), the lower stationary capital stock xs is the local minimizer and the upper stationary

capital stock xs is the local maximizer of 
(x). See Figure 1.

<Figure 1>

We introduce the following notation. Let �̂ be the discount rate that coincides with the maximum

average productivity:

�̂ := maxff(x)=xjx � 0g: (2.12)

We use x̂ to denote the capital stock of the maximum average productivity:

x̂ := argmaxff(x)=xjx � 0g: (2.13)
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We also de�ne two capital stock levels, �x and x. �x is implicitly de�ned by:


(�x) = 0; 
0(�x) > 0; �x > 0: (2.14)

�x exists when � 2 (�0; �̂]. It holds that 
(x) < 0 for all x 2 (0; �x), whereas 
(x) > 0 for all x 2 (�x; xs). As

easily veri�ed, �x(�) is continuous and strictly increasing. lim�&�0 �x(�) = 0 and lim�%�̂ �x(�) = x
s(�̂) hold.

x is implicitly de�ned by:


(x) = 
(xs); x 2 (0; xs): (2.15)

x exists when � 2 (�̂; �I). x has the property that 
(x) > 
(xs) for all x 2 (0; x), whereas 
(x) � 
(xs)

for all x � x. As easily veri�ed, x(�) is continuous and strictly increasing, and it satis�es lim�&�̂ x(�) = 0

and lim�%�I x(�) = xI . See Figure 1 for their geometry.

3 Optimal paths

This section shows some results regarding the optimal paths, based on which we characterize the critical

capital stock. The following proposition summarizes the results that are known or easily derived.

Proposition 3.1 (Monotonicity and steady states)

(i) An optimal capital path is monotonic. A nonconstant optimal path converges to either the origin

or the upper steady state.

(ii) In the case of mild discounting � 2 (0; �0], every optimal path from x > 0 converges to the upper

steady state, whereas in the case of heavy discounting � 2 (�I ;1), every optimal path converges to the

origin.

(iii) When � 2 (�0; �̂], every optimal path from x � �x converges to the upper steady state.

(iv) When � 2 (�0,�I ], there is a capital stock level x0 such that every optimal path fromx < x0 converges

to the origin. In particular, if � 2 (�̂; �I), every optimal path from x � x converges to the origin.

(v) If the lower steady state (xs; cs) is an optimal steady state, it is unstable.
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(vi) The lower steady state (xs; cs) is not an optimal steady state if:

�2 < 4f 00(xs)cs=� (cs) : (3.1)

Proof. See Appendix A.2.

One thing that is not trivial as a result of the nonconcavity of the problem is the uniqueness of an

optimal path. We can show the following:

Proposition 3.2 (Uniqueness) (i) An optimal path converging to the upper steady state is unique. (ii)

An optimal path converging to the origin is unique. (iii) When the lower steady state (xs; cs) is an optimal

steady state, there is no nonconstant optimal path from xs.

Proof. See Appendix A.3.

Remark: This proposition does not claim that every optimal path is unique. As we will see in the next

section, there are two optimal paths starting from the critical capital stock unless the lower steady state

is an optimal steady state (Proposition 4.2).

The comparative statics results below play a key role in obtaining the monotonicity of the critical

capital stock in the discount rates. In what follows, we compare two paths that di¤er in the discount

rates, �i (i = 1; 2). We refer to an optimal path when the discount rate is � as a �-optimal path.

We apply this same convention to the other paths and functions. We also introduce the terms for the

ascending and descending paths. We call an x-c path (xA(t); cA(t)), such that _xA(t) > 0 for all t � 0 and

limt!1 x
A(t) = xs, an ascending path. Similarly, we call an x-c path (xD(t); cD(t)), such that _xD(t) < 0

for all t � 0 and it converges to (0; 0) or (xs; cs), a descending path. If a descending path converges to

the origin, we call it a descending path to zero and denote it by (xD0(t); cD0(t)). When it converges to

the upper steady state, we call it a descending path to xs and denote it by (xDs(t); cDs(t)). Figure 2

illustrates the �1- and �2-ascending and descending paths, which are indicated by the propositions below.

<Figure 2>
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Proposition 3.3 (Ascending and descending to xs paths) Let �1; �2 satisfy 0 < �1 < �2. (i) Let

(xA(t; �1); c
A(t; �1)) and (xA(t; �2); cA(t; �2)) be �1- and �2-ascending paths from the same initial capi-

tal stock. Then, cA(0; �1) < cA(0; �2). (ii) Let (xDs(t; �1); cDs(t; �1)) and (xDs(t; �2); cDs(t; �2)) be �1-

and �2-descending paths to xs from the same initial capital stock. Then, cDs(0; �1) < cDs(0; �2).

Proof. See Appendix A.4.

Proposition 3.4 (Descending optimal paths to zero) Let x0 > 0 and �1; �2 satisfy �0 < �1 < �2. (i)

Let (x�D0(t; �1); c�D0(t; �1)) and (x�D0(t; �2); c�D0(t; �2)) be �1- and �2-descending optimal paths to zero

starting from the same initial capital stock x0. Then, c�D0(0; �1) < c�D0(0; �2). (ii) If the �1-descending

optimal path to zero starting from x0 exists, then a �2-descending path to zero starting from the same

initial capital stock x0 exists.

Proof. See Appendix A.4.

Remark: Although an ascending path and a path descending to xs are unique, a descending path to zero

may not be unique. As we require uniqueness, Proposition 3.4 restricts the statement to an optimal path.

4 Critical capital stock

This section investigates the critical capital stock, which is de�ned as follows:

De�nition The critical capital stock xC is a positive capital stock such that every optimal capital path

from x < xC converges to 0 and every optimal capital path from x > xC converges to the upper stationary

capital stock xs.

The �rst result concerns the existence of the critical capital stock.

Proposition 4.1 (Existence and uniqueness) There exists a unique critical capital stock xC(�) if and only

if � > �0 and the upper stationary capital stock xs(�) is an optimal stationary capital stock.

Proof. See Appendix A.5.
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Next, we show the relation of the critical capital stock and the lower stationary capital stock xs.

The proposition also provides a further result regarding the uniqueness of an optimal path. Recall that

Proposition 3.2 does not mention the uniqueness of an optimal path starting from the critical capital

stock.

Proposition 4.2 (Relation with the lower stationary capital stock) (i) If xs is an optimal stationary

capital stock, then it is the critical capital stock. In this case, every optimal path is unique. (ii) If xs is

not an optimal stationary capital stock, then there are two optimal paths starting from the critical capital

stock: One converges to the upper steady state and the other converges to the origin.

Proof. See Appendix A.6.

Remarks:

1. The converse of the above proposition (i) is not true: xC = xs does not imply that xs is an optimal

stationary capital stock. From Proposition 4.3 below, the critical capital stock coincides with the

lower stationary capital stock at some discount rate. However, xs cannot be an optimal stationary

capital stock if the condition (3.1) in Proposition 3.1 (vi) is satis�ed.

2. Nevertheless, xs can be an optimal stationary capital stock. Akao, Kamihigashi, and Nishimura

(2019) exempli�ed a parametric growth model in which the lower steady state is optimal. Kiseleva

and Wagener (2010) showed on the phase diagrams that xs can be an optimal stationary capital

stock in the shallow lake model.

The following proposition is the counterpart of the main results of Akao, Kamihigashi, and Nishimura

(2012, Propositions 4.1 and 4.2). Here, the monotonicity is strengthened to strict inequality: xC(�) <

xC(�0) for � < �0.

Proposition 4.3 (Continuity and monotonicity) (i) There is a �H 2 [�̂; �I ] such that xC(�) exists if

and only if �0 < � � �H . (ii) xC(�) is continuous and strictly increasing with lim�&�0 x
C(�) = 0 and

xC(�H) = x
s(�H).

12



Proof. See Appendix A.7.

Remark: From Proposition 4.1, the statement (i) above is equivalent to the following corollary. Indeed,

we prove this corollary in the Appendix.

Corollary 4.1 There is a �H 2 [�̂; �I ] such that xs(�) is an optimal stationary capital stock if and only

if � � �H .

Next, we present a result concerning the location of the critical capital stock. Recall that �x and x were

de�ned in (2.14) and (2.15), respectively.

Proposition 4.4 (Location of the critical capital stock) (i) If � 2 (�0; �̂], then xC(�) � �x(�). (ii) If

� 2 (�̂; �H) and xC(�) exists, then xC(�) � x(�).

Proof. Proposition 3.1 (iii) and (iv), respectively, imply (i) and (ii).

Figure 3 illustrates numerical examples with the production function:

f(x) = 10�3 ln(x+ 1) +
x2

4(x2 + 1)
;

for which xI = 0:5768, x̂ = 0:9985, �0 = 10�3, �̂ = 0:1257, and �I = 0:1630. The utility function is of the

CIES type: u(c) =
�
c1�� � 1

�
=(1 � �), � > 0. Panel (a) depicts the production function. Panels (b-1)

and (b-2) illustrate the case when � is 0:7. Panel (b-1) depicts the phase diagram when the discount rate

coincides with the maximum average productivity (� = �̂). The two vertical lines show the nullclines of

_c = 0 that are located at the lower and upper stationary capital stocks. In this case, from Proposition

4.3 (i), the critical capital stock exists. Panel (b-2) represents the case when the discount rate coincides

with the maximum marginal productivity (� = �I). The vertical line is at the in�ection point xI . The

phase diagram shows that the critical capital stock coalesces with the optimal steady state, as suggested

by Proposition 4.3 (ii).
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Panels (c-1)�(c-3) illustrate the case when the elasticity of the marginal utility is smaller: � = 0:3.

With respect to the discount rate, (c-1) corresponds to (b-1), and (c-3) corresponds to (b-2). The di¤erence

from Panel (b) is that when � = �I , there is no longer a critical capital stock. The heteroclinic bifurcation

(the coalescence of the upper stationary capital stock and the critical capital stock) occurs with a lower

discount rate, which is shown in Panel (c-2).

<Figure 3>

5 The upper bound of the discount rate

Proposition 4.3 shows that there is an upper bound of the discount rate �H 2 [�̂; �I ] beyond which the

critical capital stock and the optimal steady state do not exist. At �H , the critical capital stock coalesces

to the upper stationary capital stock that is an optimal steady state. For � > �H , there is no longer

a critical capital stock or an optimal interior steady state, although the upper steady state may exist.

Figure 3 indicates that the level of the upper bound is a¤ected by the curvature of the utility function.

This section shows that, depending on the curvature of the utility function, the critical capital stock and

the optimal steady state can survive even at a discount rate almost as high as �I , or they can disappear

even at a discount rate slightly greater than �̂. To this end, this section assumes the following CIES utility

function.

Assumption 3:

u(c) =

8>><>>:
c1��= (1� �) if � > 0 and � 6= 1

ln c if � = 1
: (5.1)

First, we show that if � is su¢ ciently large, for any � < �I , xs(�) is an optimal stationary capital

stock and, thus, the critical capital stock exists. Fix � 2 (�̂; �I). Consider the following piecewise linear

production function ~f(x):

~f(x) =

8>><>>:
�x if 0 � x < x

�x� (�� �)x if x � x
; (5.2)
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where x is de�ned in (2.15) and � is given by:

� = f(x)=x: (5.3)

Note that:

0 < � =
f(x)

x
<
f(x̂)

x̂
= �̂ < �: (5.4)

As shown in Figure 4, ~f(x) � f(x) with equality only if x 2 f0; x; xs(�)g. From this inequality, if xs(�) is

an optimal steady state to the problem:

max
c�0

Z 1

0

u(c)e�rtdt subject to _x = ~f(x)� c; x � 0; x(0) given, (5.5)

then xs(�) is also an optimal steady state to the problem (2.1).

<Figure 4>

Lemma 5.1 Problem (5.5) has the following closed-form solution for the optimal consumption policy:

~C(x) =

8>>>>>><>>>>>>:
�x if 0 � x � x

�x if x < x � ~xC

~f(x) if ~xC � x

; (5.6)

where � = (1=�) (�� �) + � and ~xC is given by:

~xC =

�
1 +

�� �
��

�
x: (5.7)

Proof. See Appendix A.8.

We de�ne that:

~�(�) :=
�
(xs)
xs � x

��1; � 2 (�̂; �I) (5.8)
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where 
(x) is the gain function de�ned in (2.11).

Proposition 5.1 For any � 2 (�̂; �I), xs(�) is an optimal steady state if � � ~�(�).

Proof. Fix � 2 (�̂; �I). From (5.8) and:


(xs) = 
(x) =

�
f(x)

x
� �

�
x = (�� �)x;

we have:

xs =

�
1 +

�� �
~��

�
x: (5.9)

Then, by comparing (5.7) and (5.9), we see for all � � ~�, that ~xC � xs and, thus, xs is an optimal steady

state to the problem (5.5). This implies that xs is also an optimal steady state to the problem (2.1).

Remark: ~�(�) is increasing with ~�(�̂) = 0 and lim�%�I ~�(�) =1.

Next, we show that for any � > �̂, we have �H < � if � is su¢ ciently small. This implies that the critical

capital stock and the optimal upper stationary capital stock may disappear, even when the discount rate

is slightly greater than �̂.

For the proof, we prepare a lemma. The lemma shows that if the utility function is linear, then for

any � > �̂, xs(�) is not an optimal stationary capital stock. Fix � > �̂ and let cM satisfy cM > f(xs(�)).

Then, consider a linear utility version of the problem (2.1) with the maximum consumption cM > f(xs):

max
c(t)

Z 1

0

c(t)e��tdt subject to _x(t) = f(x(t))� c(t); c(t) 2 [0; cM ]; x(t) � 0; x(0) = xs given:

Let xM (t) be the capital path from xs(�) induced by the following most rapid extinction policy:

c =

8>><>>:
cM if x > 0

0 if x = 0
: (5.10)
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Let us de�ne the total utility associated with xM (t) by:

VL(c
M ) :=

Z T�(cM )

0

cMe��tdt; (5.11)

where T �(cM ) represents the �rst time that xM (t) = 0.

Lemma 5.2 Let � > �̂. When cM is su¢ ciently large:

VL(c
M ) >

Z 1

0

f(xs(�))e��tdt: (5.12)

Proof. See Appendix A.9.

Proposition 5.2 For any � > �̂, there is a �M (�) such that xs(�) is not an optimal steady state if

� � �M (�).

Proof. Fix � > �̂. We choose a value of cM such that (5.12) in Lemma 5.2 holds. Note that:

Z T�(cM )

0

u(cM )e��tdt =

�
1� exp

�
��T �(cM )

��
�

�
cM
�1��

1� � ! VL(c
M ) (� ! 0)

and: Z 1

0

u(f(xs(�)))e��tdt =
(f(xs(�)))

1��

� (1� �) !
Z 1

0

f(xs(�))e��tdt (� ! 0):

Then: Z T�(cM )

0

u(cM )e��tdt�
Z 1

0

u(f(xs(�)))e��tdt! VL(c
M )�

Z 1

0

f(xs(�))e��tdt > 0

as � ! 0. Therefore, if we choose a su¢ ciently small �M (�) > 0, then xs(�) is not an optimal steady

state for � < �M (�).

6 Concluding remarks

A convex�concave production function implies that the production technology exhibits increasing returns

to scale (IRS) for a small stock level. This assumption is plausible when, for example, we consider
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a process of economic development in which the beginning stages require a large initial investment in

infrastructure, which implies IRS (Le Van et al. 2016). In a renewable resource management framework,

there are nonconvex biological properties such as the Allee e¤ect of the population dynamics (Clark 1971).3

As an example from general economic phenomena, Weitzman (1982) argued that persistent involuntary

unemployment can be explained with IRS, whereas the logic of constant returns to scale must imply full

employment. These examples indicate that IRS for a small stock level is ubiquitous, and we always have

a chance to take a path toward a lower steady state for the reason that it is optimal under a certain

criterion. However, it may be undesirable from the perspective of other value judgments, involving, for

example, sustainability and intergenerational equity criteria. A theoretical inquiry into the critical capital

stock could provide the knowledge to avoid such a rational but undesirable path and provide insight as to

why such a path has been experienced in history.

A Appendix: Proofs

A.1 Preliminaries

Before proceeding to the proofs, we prepare some lemmas and their corollaries. The �rst lemma and its

corollary are the results from the gain function.

Lemma A.1 Let (x(t); c(t)) be a nonconstant feasible path such that 
(x(t)) � 
(x(0)) for all t > 0.

Then, the constant path (x0(t); c0(t)) = (x(0); f(x(0))) dominates (x(t); c(t)):

Z 1

0

u(c(t))e��tdt <

Z 1

0

u [f(x(0))] e��tdt:

3See also the papers collected in the special issue of Environment and Resource Economics: The Economics of Non-Convex
Ecosystems.[OLE9]
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Proof.

Z 1

0

u(c(t))e��tdt < ��1u

�Z 1

0

�c(t)e��tdt

�
= ��1u

�Z 1

0

�
(x(t))e��tdt+ �x(0)

�
� ��1u

�Z 1

0

�
(x(0))e��tdt+ �x(0)

�
=
u [f(x(0))]

�
=

Z 1

0

u [f(x(0))] e��tdt; (A.1)

where the �rst line follows from Jensen�s inequality, the second line from the integration by parts, and the

third line from 
(x(t)) � 
(x(0)).

Corollary A.1 If x = argmaxf
(y)jy 2 [0; x]g, the optimal capital path starting from x monotonically

converges to a capital stock that is greater than or equal to x. Similarly, if x = argmaxf
(y)jy 2 [x;1)g,

the optimal capital path starting from x monotonically converges to a capital stock that is less than or

equal to x.

Proof. First, we prove the monotonicity. Assume that there is an optimal path for which the capital

path is not monotonic. We assume that t1 � 0 and t2 > t1 such that x�(t1) = x�(t2) and _x�(t1) _x�(t2) < 0.

Let �t = argmaxfx(t)jt 2 [t1; t2]g. Consider the problem (2.1) with the initial stock x�(�t). By the

autonomous nature of the problem, the following period t2 � t1 capital path should be optimal:

x(t) = x�
�
t+ �t�

�
t+ �t� t1
t2 � t1

�
(t2 � t1)

�
:

(b�c is the �oor function.) However, this path is dominated by the path remaining at x�(�t) from Lemma

A.1. For the other claims, note that an optimal capital path starting from x = argmaxf
(y)jy 2 [0; x]g

should satisfy _x�(0) � 0 and, similarly, an optimal capital path starting from x = argmaxf
(y)jy 2 [x;1)g

should satisfy _x�(0) � 0 from Lemma A.1.

Remark: The monotonicity of an optimal capital path can be proved by using the continuity of an optimal

consumption path. (See Askenazy and Le Van, 1999, Proposition 4, and the literature cited therein.) In
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contrast to the existing proof, the above proof does not rely on the continuity.

The following lemma and its corollary are the results from the welfare implication of the maximized

Hamiltonian along an x-c path, which originated in Weitzman (1976). Note that this lemma covers an

interior feasible path that is not necessarily an optimal path.

Lemma A.2 Let (x(t); c(t)) be an x-c path that converges. Then:

Z 1

0

u(c(t))e��tdt = ��1H�(x(0); u0(c(0))): (A.2)

Proof. As shown in Davidson and Harris (1981, Appendix), (A.2) holds if the following terminal

condition holds:4

lim
t!1

H�(x(t); u0(c(0)))e��t = 0: (A.3)

(A.3) holds if the path converges to an interior steady state. Then, assume that the path converges to

(0; 0). We denote the associated costate by q(t) = u0(c(t)). From the canonical system (2.5), we have:

q(t) = q(0) exp

�Z t

0

�� f 0 (x(s)) ds
�
: (A.4)

Then, as _x(t) = f [x(t)]� c(t)! 0 as t!1, we have:

lim
t!1

H�[x(t); q(t)]e��t = lim
t!1

�
u (c(t)) e��t + q(0) _x(t) exp

�
�
Z t

0

f 0 (x(s)) ds

��
= lim

t!1
u (c(t)) e��t: (A.5)

Thus, the statement is true if:

lim
t!1

u (c(t)) e��t = 0: (A.6)

4 If the path is an optimal path, the terminal condition (A.3) always holds from Michel (1982, Theorem).
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(A.6) holds if u is bounded from below. Then, assume that limc!0 u(c) = �1 and choose a su¢ ciently

small x(0) such that u (c(t)) < 0 for all t � 0. Then, with an arbitrarily chosen ĉ > 0, we have:

0 > u (c(t)) e��t

� fu0 (c(t)) (c(t)� ĉ) + u(ĉ)ge��t

= [q(t)(c(t)� ĉ) + u(ĉ)] e��t

=

�
q(0) exp

�Z t

0

�� f 0 (x(s) ds
�
(c(t)� ĉ) + u(ĉ)

�
e��t

= q(0) exp

�
�
Z t

0

f 0 (x(s) ds

�
(c(t)� ĉ) + u(ĉ)e��t ! 0 as t!1:

Corollary A.2 Consider two x-c paths, (x(t); c(t)) and (x0(t); c0(t)), such that x(0) = x0(0) and consider

that they converge. If:

c(0) > c0(0) � f(x(0)) or c(0) < c0(0) � f(x(0)), (A.7)

then: Z 1

0

u(c(t))e��tdt >

Z 1

0

u(c0(t))e��tdt: (A.8)

Proof. By Lemma A.2, (A.8) is equivalent to:

H�(x(0); u0(c(0))) > H�(x(0); u0(c0(0))):

This inequality holds if (A.7) is satis�ed because H�(x; q) as a function of q is strictly convex and attains

the global minimum at q = u0(f(x)).

A.2 Proof of Proposition 3.1

The statements (i), (ii), (iii), and the second part of (iv) follow from Corollary A.1. Note that for (i),

the gain function can have only two peaks at x = 0 and xs. For (ii), when � 2 (0; �0], the gain function

has only a single peak at xs. For (iii), when � 2 (�0; �̂], x = argmaxf
(y)jy 2 [0; x]g for x 2 [�x; xs] and
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x = argmaxf
(y)jy 2 [x;1)g for x � xs. There is no stock level on [�x;1)nfxsg that satis�es f 0(x) = �.

For the �rst part of (iv), see Dockner and Nishimura (2005, Lemma 4). For the second part of (iv), when

� 2 (�̂; �I), for x � x, x = argmaxf
(y)jy 2 [x;1)g and there is no stock level on (0; x] that satis�es

f 0(x) = �. (v) It follows from the eigenvalues in (2.10). For (vi), we prove the contraposition. If (xs; cs)

is an optimal steady state, from Proposition 3.1 (i) and (v), an optimal capital path is monotonic and,

from Corollary A.2, its �-limit point of the optimal x-c path is (xs; cs). This implies that the eigenvalues

of the Jacobian of the x-c system at (xs; cs) should be real numbers. That is, �2 � 4f 00(xs)cs=� (cs). �

Remark: Askenazy and Le Van (1999, Proposition 10) showed another su¢ cient condition under which

the lower steady state is not an optimal steady state:5

�2 < f 00(xs)cs=�(cs): (A.9)

It is easily veri�ed that (A.9) implies (3.1).

A.3 Proof of Proposition 3.2

(i) From (2.10), (xs; cs) is a saddle point. An optimal path converging to (xs; cs) must be on the one-

dimensional stable manifold of the x-c system and thus, it is unique. (ii) Assume that there are two

di¤erent optimal paths converging to the origin. They should start from the same initial stock x�(0) and

the di¤erent initial consumptions c�(0), c�0(0) such that c�(0) > c�0(0) > f(x�(0)). Then, from Corollary

A.2, the path starting from (x�(0); c�(0)) dominates the other path. This is a contradiction. (iii) Assume

that xs is an optimal stationary capital stock and there is a nonconstant optimal path starting from xs. As

the initial consumption is not equal to f(xs), Corollary A.2 implies that the nonconstant path dominates

the optimal constant path. This is a contradiction. �
5Also see Dechert and Nishimura (1983, Lemma 4).
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A.4 Proof of Propositions 3.3 and 3.4

As in the main text, let
�
xA(t); cA(t)

�
be an ascending path and

�
xD(t); cD(t)

�
be a descending path. We

de�ne DA and DD, associated with these paths, as follows:

DA := f(x; c) 2 R2++jf(x)� c > 0g;

DD := f(x; c) 2 R2++jf(x)� c < 0g:

In addition, we de�ne two functions �A : DA � (�0; �I)! R and �D : DD � (�0; �I)! R by:

�j(x; c; �) :=
c[f 0(x)� �]
�(c) [f(x)� c] ; (x; c) 2 Dj ; j = A;D:

�j (j = A;D) give the gradient of the vector �eld of the x-c system at (x; c) in the domain Dj (j = A;D).

They satisfy:

@�A(x; c; �)

@�
< 0 and

@�D(x; c; �)

@�
> 0: (A.10)

Let inf xA(�) be the in�mum of the capital stocks from which a �-ascending path (xA(t; �); cA(t; �))

starts:

inf xA(�) := inffx 2 R+j a �-ascending path starting from x existsg: (A.11)

We de�ne the subset of the x-c plane as:

epiA(�) := f(x; c) 2
�
inf xA(�); xs(�)

�
� R+j9t 2 R : x = xA(t; �) and c > cA(t; �)g: (A.12)

Similarly, let
�
xD0(t; �); cD0(t; �)

�
denote a �-descending path to zero and

�
xDs(t; �); cDs(t; �)

�
denote a
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�-descending path to xs. We de�ne supxD0(�) and supxDs(�) as:

supxD0(�) := supfx 2 R+j a �-descending path to zero from x existsg; (A.13a)

supxDs(�) := supfx 2 R+j a �-descending path to xs from x existsg: (A.13b)

In addition, we de�ne a subset of the x-c plane as:

hypDs(�) := f(x; c) 2
�
xs(�); supxDs(�)

�
� R+j9t 2 R : x = xDs(t; �) and c < cDs(t; �)g: (A.14)

Proof of Proposition 3.3. (i) Let (xA(t; �1); cA(t; �1)) and (xA(t; �2); cA(t; �2)) be, respectively, �1- and

�2-ascending paths starting from the same initial capital stock x0 > 0. Assume that cA(0; �1) � cA(0; �2).

From (A.10), �1 < �2 implies that
�
(xA(t; �2); c

A(t; �2)
�
62 epiA(�1) for a small t � 0. On the other hand,

as xs(�1) > xs(�2) > x0, (xs(�2); cs(�2)) 2 epiA(�1). In order for the �2-ascending path to enter epiA(�1),

there must be a crossing point:

(xc; cc) := (x
A(t; �1); c

A(t; �1)) = (x
A(t0; �2); c

A(t0; �2))

at some t � 0 and t0 � 0 and it must satisfy:

�A(xc; cc; �1) � �A(xc; cc; �2): (A.15)

However, this inequality contradicts (A.10), and we conclude that �1 < �2 implies that cA(t; �1) < cA(t; �2).

(ii) The proof for a descending path to xs is similar to the proof for an ascending path. Consider the

�1- and �2-descending paths to xs starting from x0. Assume that cDs(0; �1) � cDs(0; �2). From (A.10),�
(xDs(t; �1); c

Ds(t; �1)
�
62 hypDs(�2) for a small t � 0, whereas (xs(�1); cs(�1)) 2 hypDs(�2). In order for
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the �1-descending path to enter hypDs(�2), there must be a crossing point:

(xc; cc) := (x
Ds(t; �1); c

A(t; �1)) = (x
Ds(t0; �2); c

A(t0; �2))

at some t � 0 and t0 � 0 and it must satisfy:

�D(xc; cc; �1) � �D(xc; cc; �2):

However, this inequality contradicts (A.10) and thus cDs(0; �1) < cDs(0; �2). �

Proof of Proposition 3.4. (i) Consider the �1- and �2-descending optimal paths to zero starting

from the same initial stock x0 > 0. We denote them by
�
x�D0(t; �i); c

�D0(t; �i)
�
, i = 1; 2. Assume

that c�D0(0; �1) > c�D0(0; �2). Consider the �2-x-y path starting from
�
x0; c

�D0(t; �1)
�
and denote it

by (x0(t; �2); c0(t; �2)). From (A.10), (x0(t; �2); c0(t; �2)) and
�
x�D0(t; �1); c

�D0(t; �1)
�
do not cross when

the capital stock is in (0; x0). Also, (x0(t; �2); c0(t; �2)) and
�
x�D0(t; �2); c

�D0(t; �2)
�
do not cross when

the capital stock is in (0; x0) because they are the solutions of the same system of di¤erential equations

with di¤erent initial values. This is the situation where the orbit of (x0(t; �2); c0(t; �2)) lies between the

orbits of
�
x�D0(t; �i); c

�D0(t; �i)
�
, (i = 1; 2) when the capital stock is in (0; x0). From the de�nition of the

descending path to zero, the following holds:

lim
t!1

�
x�D0(t; �1); c

�D0(t; �1)
�
= lim

t!1

�
x�D0(t; �2); c

�D0(t; �2)
�
= (0; 0) :

This also implies that limt!1 (x
0(t; �2); c

0(t; �2)) = (0; 0). However, if so, from Corollary A.2, (x0(t; �2); c0(t; �2))

dominates the optimal path
�
x�D0(t; �2); c

�D0(t; �2)
�
, which is a contradiction. In the case that c�D0(0; �1) =

c�D0(0; �2), there are time points t1 > 0 and t2 > 0 such that x�D0(t1; �1) = x�D0(t2; �2) := x00 and

c�D0(t1; �1) > c�D0(t2; �2) from (A.10). By taking x00 as the initial capital stock, we reach the same

contradiction. Therefore, c�D0(0; �1) > c�D0(0; �2).

(ii) As �2 > �1 > �0, both the �1- and �2-descending optimal paths to zero exist if a su¢ ciently small x0
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is taken as the initial stock, from Proposition 3.1. We denote these paths by
�
x�D0(t;x0; �i); c

�D0(t;x0; �i)
�
,

i = 1; 2. From (i) of this Lemma, we have:

c�D0(0;x0; �2) > c
�D0(0;x0; �1): (A.16)

Consider the extended paths of these optimal paths
�
xD0(t;x0; �i); c

D0(t;x0; �i)
�
, i = 1; 2. From part

(i) of the lemma, these paths do not cross. Therefore, for any t1; t2 2 R such that xD0(t1;x0; �1) =

xD0(t2;x0; �2) < supx
D0(�1), the following holds:

cD0(t2;x0; �2) > c
D0(t1;x0; �1) � f(xD0(t1;x0; �1)): (A.17)

This shows that supxD0(�1) � supxD0(�2). �

Remark: In a discrete time model, the monotonicity of optimal consumptions has been shown by Amir

et al. (1991, Theorem 5.5. (d)). Their proof utilizes the supermodularity of the optimal value function,

which is not applicable to the present model because of the di¤erence in the Bellman equations between

a discrete time model and a continuous time model. For the proof, we utilize the property of the vector

�elds of the x-c system. As a result, our results in Proposition 3.3 are not limited to an optimal path.

A.5 Proofs of Propositions 4.1

If part of the proof: assume that � > �0 and xs(�) is an optimal stationary capital stock. From Propositions

3.1 (i) and 3.2 (i) and (ii) (relating to monotonicity and uniqueness), the state space [0;1) is partitioned

into intervals Y and Z such that every optimal capital path starting from y 2 Y converges to 0, and every

optimal capital path starting from z 2 Z converges to xs. Note that, by construction, supY � inf Z, but

supY < inf Z is ruled out because x 2 (supY; inf Z) cannot be an optimal stationary capital stock that

must satisfy f 0(x) = �. Also note that supY > 0 from Proposition 3.1 (iv). Then, xC(�) = supY =

inf Z 2 (0; xs(�)] is a unique critical capital stock. Only if part of the proof: Assume that xs(�) is not an

optimal steady state or � � �0. Then, in the former case, every nonconstant optimal path converges to
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0 from Proposition 3.1 (i), whereas in the latter case, every optimal path starting from a positive capital

stock converges to xs(�) from Proposition 3.1 (ii). Thus, in both cases, xC(�) does not exist. �

A.6 Proof of Proposition 4.2

(i) Assume that there is an ascending path
�
xA(t); cA(t)

�
starting from x � xs. Then, there is a t0 � 0

such that xA(t) = xs and cA(t) < f(xs). From Corollary A.2, this contradicts that xs is an optimal

stationary capital stock. A similar argument rules out that there is a descending path to zero starting

from x � xs. Therefore, there is no nonconstant optimal capital path from xs and every optimal path

starting from x < xs converges to zero, and every optimal path starting from x > xs converges to zero,

i.e., xs is the critical capital stock. The uniqueness follows from Proposition 3.2.

(ii) Take xD0 2 (0; xC) and let
�
xD0(t); cD0(t)

�
be the descending path to zero starting from xD0 .

Note that there is a tD 2 R� [ f�1g such that
�
xD0(t); cD0(t)

�
is an optimal path for t > tD and

limt&tD x
D0(t) = xC . Similarly, take xA0 2 (xC ; xs) and let

�
xA(t); cA(t)

�
be the ascending path starting

from xA0 . Then, there is a t
A 2 R�f�1g such that

�
xA(t); cA(t)

�
is an optimal path for t > tA and

limt&tA x
A(t) = xC . From Proposition 2.1 (ii) and Lemma A.2, we have:

lim
x%xC

V �(x) = ��1H�(xC ; u0( lim
t&tD

cD0(t)))

= ��1H�(xC ; u0( lim
t&tA

cA(t))) = lim
x&xC

V �(x):

By de�nition, cD0(t) > f(xD0(t)) for t 2 (tD;1) and cA(t) < f(xA(t)) for t 2 (tA;1). Therefore, from

Corollary A.2, either of the following holds:

cD0(tD) > f(xC) > cA(tA);

or

lim
t&tD

cD0(t)) = f(xC) = lim
t&tD

cD0(t)):
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However, the latter is ruled out because this is the case in which:

V �(xC) = ��1H�(xC ; f(xC));

i.e., xC is an optimal stationary capital and xC = xs. In the former case, there are two optimal paths

starting from xC : one is a descending path with the initial value
�
xC ; cD0(tD)

�
, and the other is an

ascending path with the initial value from
�
xC ; cA(tA)

�
. �

A.7 Proof of Proposition 4.3

The proof uses the following �ve lemmas. The �rst lemma concerns the optimality of xs.

Lemma A.3 There exists a discount rate �H 2 [�̂; �I ] such that xs(�) is (is not) an optimal stationary

capital stock if � < �H (� > �H).

Proof. If xs(�) is not an optimal stationary capital stock, the optimal path starting from xs(�) is a

descending optimal path to zero. Then, from Proposition 3.4 (ii), for all �0 > �, there is a descending path

to zero from xs(�). As xs(�0) < xs(�), this path contains a descending path to zero from xs(�0), and, from

Corollary A.2, xs(�0) is not an optimal stationary capital stock. �H is de�ned by:

�H = inff� > 0jxs(�) is not an optimal stationary capital stockg:

Note that from Proposition 3.1 (iii), �H 2 [�̂; �I ].

Remark: In Lemma A.3, it is not clear whether xs(�H) is an optimal steady state. To clarify this, we

need a property of the critical capital stock.

Lemma A.4 Let �1 and �2 satisfy �0 < �1 < �2 < �H , where �H is the upper bound of discount rates

de�ned in Proposition A.3. Then:

xC(�1) < x
C(�2): (A.18)
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Proof. The proof is divided into two cases, in which xs(�1) is and is not an optimal stationary capital

stock.

First, we consider the case in which xs(�1) is not an optimal stationary capital stock. In this case,

from Proposition 4.2 (ii), we have the �1-ascending and descending optimal paths
�
xA�(t; �1); c

A�(t; �1)
�
,�

xD�(t; �1); c
D�(t; �1)

�
starting from xA�1 (0) = x

D�
1 (0) = xC(�1). Then, from Proposition 3.4 (ii), there is

the �2-descending path to zero
�
xD(t; �2); c

D(t; �2)
�
from xD(0; �2) = xC(�1). If the �2-ascending path�

xA(t; �2); c
A(t; �2)

�
from xC(�1) does not exist, then this path is optimal and xC(�1) < xC(�2). If it

exists, from Propositions 3.3 and 3.4:

cA�(0; �1) < c
A(0; �2) � f(xC(�1)) < cD�(0; �1) < cD(0; �2):

Then, from Lemma A.2, we have:

�2

Z 1

0

u
�
cA(t; �2)

�
e��2dt

= H� �xC(�1); u0(cA(0; �2))� < H� �xC(�1); u0(c�A(0; �1))�
= H� �xC(�1); u0(c�D(0; �1))� < H� �xC(�1); u0(cD(0; �2))� = �2 Z 1

0

u
�
cD(t; �2)

�
e��2dt;

where the inequalities follow from the fact that H�(x; q) is strictly concave in q and attains the minimum

at q = u0(f(x)). As the descending path dominates the unique ascending path, we have xC(�2) > xC(�1).

Next, consider the case in which xs(�1) is an optimal steady state. This is the case where xs(�1) =

xC(�1) = inf xA(�1). Assume that xC(�2) � xC(�1). Since inf xA(�2) � inf xA(�1) by Proposition

3.4 (i), it must satisfy xC(�2) = xC(�1) = inf xA(�2). But this implies xC(�2) = xs(�2), and, thus,

xs(�1) = xs(�2), which is a contradiction.

Next, we introduce ascending and descending value functions and show that they, as well as the optimal

value function, are continuous in the discount rate. These results are used below to show the coalescence

of the critical capital stock and the optimal upper stationary capital at the upper bound of the discount

rate �H (Lemma A.6) and the continuity of the critical capital stock in the discount rate (Lemma A.7).
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Take an arbitrarily large �x such that 0 < f 0(�x) < �0 and restrict the state space to [0; �x]. Note that

if � � �0, any optimal capital path enters [0; �x] in a �nite time and stays in [0; �x] from Proposition 3.1.

Therefore, this restriction does not a¤ect an optimal path starting from x 2 R+.6 Also, take �� > �I . We

use (x�(t;x; �); c�(t;x; �)) to denote the optimal path starting from x 2 [0; �x] when the discount rate is

� 2 [�0; ��]. We choose the consumption level �c that satis�es:

�c > max
�2(0;��];x2[0;�x];t2[0;1)

c�(t;x; �): (A.19)

�c <1 follows from the facts that an optimal path lies on a stable manifold of a steady state and the optimal

consumption is increasing in the discount rate. We modify the problem (2.1) by imposing c(t) 2 [0; �c] and

standardizing the utility by:

�u(c) := u(c)� u(�c):

The associated optimal value function �V � : [0; �x]� (0; ��]! R� [ f�1g is de�ned by:

�V �(x0; �) :=max
c(t)

Z 1

0

�u (c(t)) e��tdt (A.20)

subject to _x(t) = f (x(t))� c(t); c(t) 2 [0; �c], x(t) � 0; x(0) = x0 2 [0; �x]:

The optimal paths are the same as those in the original problem (2.1).

We also de�ne two associated value functions. The ascending value function �V A : [0; �x] � (0; ��] !

R� [ f�1g is de�ned by:

�V A(x0; �) :=max
c(t)

Z 1

0

�u(c(t))e��tdt (A.21)

subject to _x(t) = f(x(t))� c(t); c(t) 2 [0; f(x(t))]; x(0) = x0 2 [0; �x]:

6 In fact, the interval that we consider in the lemmas A.6 and A.7 below is contained in any [0; �x] as long as �x satis�es
f 0(�x) < �0.
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The descending value function �V D : [0; �x]� (0; ��]! R� [ f�1g is de�ned by:

�V D(x0; �) :=max
c(t)

Z 1

0

�u(c(t))e��tdt (A.22)

subject to _x(t) = f(x(t))� c(t); c(t) 2 [f(x(t)); �c]; x(0) = x0 2 [0; �x]:

The problems (A.21) and (A.22) satisfy the conditions in d�Albis, Gourdel, and Le Van (2008), and an

optimal path exists from their Theorem 1. Also note that from the de�nition of the critical capital stock,

the following hold:

�V �(x; �) = �V D(x; �) > �V A(x; �) for 0 < x < xC(�);

�V �(x; �) = �V A(x; �) > �V D(x; �) for x > xC(�) < x � xs(�):

Lemma A.5 For each x 2 (0; �x], the three value functions, �V �(x; �); �V A(x; �), and �V D(x; �), are contin-

uous in � 2 (0; ��).

Proof. Fix x 2 (0; �x]. First, we consider the optimal value function �V �. For 0 < �1 < �2 < ��, we

have:

�V �(x; �2) =

Z 1

0

�u(c�(t; �2))e
��2tdt �

Z 1

0

�u(c�(t; �1))e
��2tdt

�
Z 1

0

�u(c�(t; �1))e
��1tdt

= �V �(x; �1) �
Z 1

0

�u(c�(t; �2))e
��1tdt; (A.23)

where the inequalities in the �rst and third lines follow from the optimality of the �i-consumption paths

c�(t; �i) for i = 2; 1, respectively, and the inequality in the second line follows from �1 < �2 and the
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nonpositivity of �u(c). Then, we have:

lim
�2&�1

j �V �(x; �2)� �V �(x; �1)j = lim
�2&�1

�Z 1

0

�u(c�(t; �2))e
��2tdt�

Z 1

0

�u(c�(t; �1))e
��1tdt

�
� lim

�2&�1

�Z 1

0

�u(c�(t; �2))e
��2tdt�

Z 1

0

�u(c�(t; �2))e
��1tdt

�
=

Z 1

0

lim
�2&�1

�u(c�(t; �2))(e
��2t � e��1t)dt = 0; (A.24)

from the monotone convergence theorem. Similarly, for �3 2 (0; �1):

lim
�3%�1

j �V �(x; �3)� �V �(x; �1)j = lim
�3%�1

�Z 1

0

�u(c�(t; �1))e
��1tdt�

Z 1

0

�u(c�(t; �3))e
��3tdt

�
� lim

�3%�1

�Z 1

0

�u(c�(t; �1))e
��1tdt�

Z 1

0

�u(c�(t; �1))e
��3tdt

�
=

Z 1

0

lim
�3%�1

�u(c�(t; �1))(e
��1t � e��3t)dt = 0: (A.25)

These results verify that �V �(x; �) is continuous in �. As we have derived this result by using only the

negativity of �u and the optimality of the consumption paths, the same argument is applied to the ascending

and descending value functions and it is found that these value functions are also continuous in �.

Now, we show the coalescence of the critical capital stock and the optimal upper stationary capital

stock at �H and the continuity of the critical capital stock.

Lemma A.6 xs(�H) is an optimal stationary capital stock and xs(�H) = xC(�H), where �H is de�ned in

Proposition A.3.

Proof. As xs(�H) < xs(�) for � < �H , Proposition 2.1 (ii) implies that:

��1�u (f (xs(�))) = �V �(xs(�); �) � �V �(xs(�H); �): (A.26)
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Using the continuity (Lemma A.5), by sending � to �H , we have �
�1
H �u (f (xs(�H))) � �V �(xs(�H); �H). As

keeping xs(�H) is feasible, we have:

��1H �u (f (xs(�H))) = �V �(xs(�H); �H): (A.27)

That is, xs(�H) is an optimal upper stationary capital stock. Next, we show that xC(�H) = xs(�H). As

xs(�) is decreasing and xC(�) is increasing (Lemma A.4), xC(�) < xs(�H) < xs(�) holds. Assume that

xC(�H) < x
s(�H). Then, for z 2

�
xC(�H); x

s(�H)
�
:

�V �(z; �H) = �V �A(z; �H) > �V �D(z; �H); (A.28)

from the de�nition of the critical capital stock. On the other hand, for � > �H :

�V �(z; �) = �V �D(z; �) > �V �A(z; �);

from the de�nition of �H . These value functions are continuous in � (Lemma A.5). By sending � to �H ,

we have:

�V �(z; �H) = �V �D(z; �H) � �V �A(z; �H): (A.29)

This contradicts (A.28) and we conclude that xC(�H) = xs(�H).

Lemma A.7 (Continuity) xC(�) is continuous on (�0; �H ], where �H is de�ned in Proposition A.3.

Proof. We prove by contradiction. Suppose that there is �0 2 (�0; �H ] at which xC(�) is discontinuous.

From Lemma A.4, this is the case in which (a) lim�%�0 x
C(�) < xC(�0) and/or (b) lim�&�0 x

C(�) > xC(�0).

Suppose that case (a) occurs. Let z 2 (lim�%�0 x
C(�); xC(�0)). Then:

�V A(z; �0) < �V D(z; �0) = �V �(z; �0): (A.30)
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On the other hand, for � < �0, �V A(z; �) > �V D(z; �) holds. The continuity of these value functions in �

(Lemma A.5) implies that �V A(z; �0) � �V D(z; �0) at the limit �% �0, which contradicts (A.30). Thus, case

(a) is ruled out. By a parallel argument, case (b) is also ruled out.

Proof of Proposition 4.3: (i) follows from Lemma A.6 and Proposition 3.4. (ii) follows from Lemma

A.4 and A.7. �

A.8 Proof of Lemma 5.1

We verify the optimality of ~C(x) by the Hamilton�Jacobi�Bellman equation. Denote by T (x) the time to

reach x from x 2 (x; ~xC). T (x) is given by:

e��T (x) =
�x� (�+ � � �)x
�x� (�+ � � �)x: (A.31)

The optimal value function ~V �(x) associated with the policy function (5.6) is given by:

~V �(x) =

8>>>>>>>>>><>>>>>>>>>>:

8>><>>:
[���=(1� �)]x1�� if � 6= 1

��1(ln �x+ ��1(�� �)) if � = 1
for 0 < x � x

R T (x)
0

u(�x)e��tdt+ ~V �(x)e��T (x) for x < x � ~xC

u( ~f(x))=� for ~xC � x

; (A.32)

where

� = �+
�� �
�

: (A.33)

With ~V �(x) and ~C(x), the following holds for each x > 0:

� ~V �(x) = u( ~C(x)) + ~V �0(x)[ ~f(x)� ~C(x)] (A.34)

� u(c) + ~V �0(x)[ ~f(x)� c] for all c � 0:

34



Let (~x(t); ~c(t)) be a feasible path induced by the policy function (5.6). We compare this path with a

candidate of optimal path (x(t); c(t)) starting from the same initial capital stock x(0) = ~x(0). (A.34)

leads to: Z 1

0

u(~c(t))e��tdt�
Z 1

0

u(c(t))e��tdt � lim
t!1

e��t( ~V �(x(t))� ~V �(~x(t))): (A.35)

We show that the right-hand side of (A.35) is nonnegative. This is obvious if the utility function is bounded

from below or both x(t) and ~x(t) converge to a positive number. In other words, we need to check the

case that � � 1 and either of x(t) or ~x(t) converges to 0. From Proposition 2.1, (x(t); c(t)) can be chosen

in the class of the x-c paths. Then since the Jacobian matrix of the x-c system at (0; 0) is

J =

2664 � �1

0 (�� �) =�

3775 ; (A.36)

the origin is a saddle point by (5.4). The stable eigenvector of (A.36) is given by (1; �). For an x-c path

(x(t); c(t)) that converges to the origin with a su¢ ciently small initial value x(0), we have:

x(t) = x(0) exp

�
�
�
�� �
�

�
t

�
+ o(x(t));

where limx!0 o(x) = 0. Then we have:

lim
t!1

e��t ~V �(x(t)) =

8>><>>:
limt!1

���x(t)1��e��t

1�� = limt!1
���x(0)1��e��t

1�� = 0 for � 6= 1

limt!1 e
��t ��ln �x(0)e(���)t� =�+ (�� �) =�2� = 0 for � = 1 : (A.37)

Therefore, if an x-c path (x(t); c(t)) converges to the origin, then limt!1 e
��t ~V �(x(t)) = 0. As (~x(t); ~c(t))

is also an x-c path, if it converges to the origin, we have limt!1 e
�rt ~V �(~x(t)) = 0. Therefore the right-hand

side of (A.35) is 0, and the proof completes. �
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A.9 Proof of Lemma 5.2

Using the gain function (2.11), we have:

VL(c
M )�

Z 1

0

f(xs)e��tdt =

Z T�(cM )

0


(xM (t))e��tdt�
Z 1

0


(xs)e��tdt: (A.38)

It is easily veri�ed that T �(cM ) and VL(cM ) are continuous. Given � > �̂:

0 > 
(xM (t)) � 
(xs) for all t 2 [0; T �(cM )); (A.39)

where �xs is the lower stationary capital stock. As limcM!1 T
�(cM ) = 0, the following holds:

0 >

Z T�(cM )

0


(xM (t))e��tdt �
Z T�(cM )

0


(xs)e
��tdt! 0 as cM !1: (A.40)

Therefore: Z T�(cM )

0


(xM (t))e��tdt! 0 as cM !1: (A.41)

On the other hand, as � > �̂, 
(xs) < 0, and thus
R1
0

(xs)e��tdt < 0. Therefore, with a su¢ ciently large

cM , (A.38) is positive. That is, (5.12) holds. �
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Figure 1.  Production function and gain function 
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Figure 2.  Ascending and descending paths when 1 2,ρ ρ ρ=  ( 1 2ρ ρ< ) 

 
  



 

Figure 3
 

 
 
 
 
(a) Production function    (c-1) 0.3,  =0.12569σ ρ=  

  
ˆ 0.12569,  0.16301.Iρ ρ= =  

 
 
(b-1) 0.7,  0.12569σ ρ= =      (c-2) 0.3,  =0.15642σ ρ=   
 

 

 
(b-2) 0.7,  0.16301σ ρ= =       (c-3) 0.3,  =0.16301σ ρ=  
 

 

 
Figure 3.  Numerical simulations. 



 

Figure 4
 

 
 

 
 

 
 

Figure 4.  Piecewise linear production function 
 
 


