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Optimal steady state of an economic dynamics model with a nonconcave production

function

Abstract: In a nonconcave economic dynamics model, an open question is the optimality of a steady

state of the canonical system of Hamiltonian di¤erential equations in the convex part of the production

function. We demonstrate that it can be an optimal steady state.
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1 Introduction

We consider an economic dynamics model with a convex-concave production function. This type of

model appears in a broad range of economics such as economic development (Azariadis and Drazen 1990;

Askenazy and Le Van 1999), �rm dynamics (Davidson and Harris 1981; Haunschmied et al. 2005) and

environmental and resource management (Clark 1971; Dasgupta and Mäler 2003), where increasing returns

to scale prevails in small stock levels due to, for example, the large amount of initial investment and the

nonconvexity of nature.

The simplest form of such a model is given by:

max
c(t)�0

Z 1

0

u (c(t)) e��tdt (1)

subject to _x(t) = f (x(t))� c(t); x(t) � 0; x(0) = x � 0 given,

where the utility function u : R+ 7! R [ f�1g is a strictly increasing and strictly concave C1 function on

(0;1) with limc&0 u
0(c) = 1, the discount rate � is positive, and the production function f : R+ 7! R+

is a C2 function with the following properties: (a) f(0) = 0, (b) there is an in�ection point xI such that

f 00(x) ? 0 for x 7 xI , (c) limx&0 f
0(x) � 0, and (d) limx%1 f

0(x) < �.
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When we assume limx&0 f
0(x) < � < f 0(xI), there is xs such that xs 2 (0; xI) and f 0(xs) = �. In

a concave model, f 0(xs) = � implies that xs is an optimal steady state. However, it may not be true

because the problem is not concave and thus the Arrow�s su¢ ciency theorem for an optimal path is not

applicable. In fact, there are su¢ cient conditions that xs can not be an optimal steady state. See Dechert

and Nishimura (1983), Askenazy and Le Van (1999) and Akao, Kamihigashi and Nishimura (2019).

The question whether xs can be an optimal steady state is concerned with the critical capital stock,1 a

threshold such that any optimal capital path from a stock level below (above) the threshold converges to a

lower (higher) steady state. The critical capital stock has an important implication to economic problems

such as the poverty trap and the ruinous use of environmental assets. If xs is an optimal steady state,

then it is the critical capital stock. However if it is not, the identi�cation on the location is di¢ cult in

general.

In this paper, we demonstrate that xs can be an optimal steady state by applying Sorger�s su¢ ciency

theorem for an optimal path. The next section shows the Sorger�s theorem. The third section exempli�es

that xs can be an optimal steady state under certain conditions.

2 Sorger�s su¢ ciency theorem

In this section, we introduce Sorger�s su¢ ciency theorem for an optimal path. The theorem below is

tailored from his original one for a general class of economic dynamics models to our one state variable

autonomous model. Because of this, we shall also include the proof of the theorem.

For problem (1), path (x(t); c(t)) is called feasible if x(t) is absolutely continuous, c(t) is measurable

and they satisfy the constraint in (1). If a feasible path (x�(t); c�(t)) satis�es

Z 1

0

[u(c(t))� u(c�(t))] e��tdt � 0

for any feasible path (x(t); c(t)) such that x(0) = x�(0), then (x�(t); c�(t)) is a solution of (1) and is called

1 It is also known as Skiba point or Dechert-Nishimura-Skiba (DNS) point in the literature. Skiba (1978) indicated the
existence and Dechert and Nishimura (1983) proved it.
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optimal.

We de�ne the Hamiltonian and the maximized Hamiltonian H� associated with problem (1) by

H(c; x; q) � u(c) + q(f(x)� c); (2)

and H�(x; q) � max
c�0

H(c; x; q); (3)

where q is the costate variable. Also, we de�ne the function

~H(x; q(t); Q(t); y(t)) � H�(x; q(t)�Q(t)(y(t)� x)) + 1
2
( _Q(t)� �Q(t))x2 (4)

with given absolutely continuous functions q(t), Q(t) and y(t). Note that at x = y(t),

@ ~H(y(t); q(t); Q(t); y(t))

@x
=
@H�(y(t); q(t))

@x
+
@H�(y(t); q(t))

@q
Q(t) + ( _Q(t)� �Q(t))y(t); (5)

if the maximized Hamiltonian is di¤erentiable at (y(t); q(t)).

Theorem 1 (Sorger, 1989, Lemma 1 and Theorem 1) Let (x�(t); c�(t)) be a feasible path for problem

(1). (x�(t); c�(t)) is an optimal path if there exist absolutely continuous functions q : [0;1) 7! R and

Q : [0;1) 7! R such that the following conditions are satis�ed:

(a) For almost all t 2 [0;1) the maximum condition

H�(x�(t); q(t)) = H(x�(t); c�(t); q(t)) (6)

holds.

(b) The pair (x�; p�) satis�es the canonical system of di¤erential equations

_x�(t) = H�
q (x

�(t); q(t)) (7a)

_q(t) = �q(t)�H�
x(x

�(t); q(t)) (7b)

4



almost everywhere on [0;1).

(c) For almost all t 2 [0;1) the function ~H(x; q(t); Q(t); x�(t)) in (4) is concave with respect to x.

(d) For all feasible path from the same initial state with (x�(t); c�(t)), the transversality condition

lim
T!1

e��t
�
q(t)(x(t)� x�(t)) + 1

2
Q(t)(x(t)� x�(t))2

�
� 0 (8)

is satis�ed.
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Proof.

Z 1

0

[u(c(t))� u(c�(t))] e��tdt

=

Z 1

0

[H(x(t); c(t); q(t))�H(x�(t); c�(t); q(t)) + q(t) ( _x�(t)� _x(t))] e��tdt

=

Z 1

0

2664 H[x(t); c(t); q(t)�Q(t)(x�(t)� x(t))]�H(x�(t); c�(t); q(t))

+q(t) ( _x�(t)� _x(t)) +Q(t)(x�(t)� x(t)) _x(t)

3775 e��tdt

�
Z 1

0

2664 H�[x(t); q(t)�Q(t)(x�(t)� x(t))]�H�(x�(t); q(t))

+q(t) ( _x�(t)� _x(t)) +Q(t)(x�(t)� x(t)) _x(t)

3775 e��tdt (by Condition (a))

=

Z 1

0

2664 ~H(x(t); q(t); Q(t); x�(t))� ~H(x�(t); q(t); Q(t); x�(t))

�(1=2)( _Q(t)� �Q(t))[x(t)2 � x�(t)2] + q(t) ( _x�(t)� _x(t)) +Q(t)(x�(t)� x(t)) _x(t)

3775 e��tdt

�
Z 1

0

2664 [@ ~H(x�(t); q(t); Q(t); x�(t))=@x](x(t)� x�(t))

�(1=2)( _Q(t)� �Q(t))[x(t)2 � x�(t)2] + q(t) ( _x�(t)� _x(t)) +Q(t)(x�(t)� x(t)) _x(t)

3775 e��tdt
(by Condition (c))

=

Z 1

0

2664 [H�
x(x

�(t); q(t)) +H�
q (x

�(t); q(t))Q(t) + ( _Q(t)� �Q(t))x�(t)](x(t)� x�(t))

�(1=2)( _Q(t)� �Q(t))[x(t)2 � x�(t)2] + q(t) ( _x�(t)� _x(t)) +Q(t)(x�(t)� x(t)) _x(t)

3775 e��tdt
(by (5))

=

Z 1

0

2664 [� _q(t) + �q(t) + _x�(t)Q(t) + ( _Q(t)� �Q(t))x�(t)](x(t)� x�(t))

�(1=2)( _Q(t)� �Q(t))[x(t)2 � x�(t)2] + q(t) ( _x�(t)� _x(t)) +Q(t)(x�(t)� x(t)) _x(t)

3775 e��tdt
(by Condition (b))

=

Z 1

0

2664 �( _q(t)� �q(t))(x(t)� x�(t))� q(t) ( _x(t)� _x�(t))

�(1=2)( _Q(t)� �Q(t))(x(t)� x�(t))2 �Q(t)(x(t)� x�(t)) ( _x(t)� _x�(t))

3775 e��tdt
=

Z 1

0

d

dt

��
�q(t)(x(t)� x�(t))� (1=2)Q(t)(x(t)� x�(t))2

�
e��t

�
dt

= � lim
t!1

�
q(t)(x(t)� x�(t)) + (1=2)Q(t)(x(t)� x�(t))2

�
e��t

� 0: (by Condition (d))
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3 Optimal steady state: Example

Assume that the production function in the problem (1) takes the form of:

f(x) = �1
6
b3x

3 +
1

2
b2x

2 + b1x; (9)

where bi > 0 (i = 1; 2; 3). f(x) is strictly convex on [0; b2=b3] and strictly concave on [b2=b3;1), i.e.

xI = b2=b3. Let

�I � f 0(xI) = b1 +
b22
2b3
: (10)

We assume � 2 (b1; �I). Then, since b1 = limx&0 f
0(x) and �I = maxff 0(x)jx > 0g, there are two capital

stocks that satisfy f 0(x) = �. We call the smaller one the lower stationary capital stock and the larger

one the upper stationary capital stock, and denote them by, respectively, xs(�) and xs(�) as functions of

�. They are given by

xs(�) =
1

b3

�
b2 �

q
b22 � 2b3(�� b1)

�
; (11)

xs(�) =
1

b3

�
b2 +

q
b22 � 2b3(�� b1)

�
: (12)

With the production function (9), we shall show that the conditions in Sorger�s su¢ ciency theorem

(Theorem 1 in this note) are satis�ed at the lower stationary capital stock xs(�), if � is close to b1 and

if certain curvature conditions are satis�ed. The curvature conditions are expressed with the notion of

�-concavity. A function g : R 7! R is �-concave if g(x) + (�=2) jxj2 is concave. We assume that the

utility function in the problem (1) is a-concave with large positive a in the relevant sub-domain. Applying

the de�nition of �-concavity, we can say that the production function (9) is �b2-concave. Note that b2

expresses the degree of convexity. As we show in Proposition 1 below, in order for xs(�) to be an optimal

steady state, the degree of concavity a in the utility function should increase as the degree of convexity
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b2 in the production function becomes large.

Proposition 1 If the production function (9) satis�es

b2 <

p
b1b3
2

; (13)

then there exist a utility function u and the discount rate �� such that xs(�) is an optimal steady state for

� 2 (b1; ��). The utility function satis�es

u0(c) = �a(c� f(xs(�))) + q; (14)

for c 2 [c; �c], where a and q are chosen satisfying

a >
4b2
(b1)2

; (15)

and

q 2
 
b1b2
b3
a;
(b1)

2

4b2
a

!
; (16)

respectively, and c and �c are given by

c = f(xs(�))�
b1
2
xs(�) > 0; (17)

and

�c = f(xs(�)) +
b1
2
[xs(�)� xs(�)] ; (18)

respectively.

Proof. We restrict the state space to [0; xs(�)] since for the problem (1) a nonconstant optimal capital

path from x 2 [0; xs(�)] monotonically converges to either 0 or xs(�), as shown by Akao, Kamihigashi

and Nishimura (2019, Proposition 3.1) Let a and q be positive numbers and Q a negative number. The
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function ~H in condition (c) of Theorem 1 is written as:

~H(x; q;Q; xs(�)) = H
�(x; q �Q(xs(�)� x))�

1

2
�Qx2 (19)

In order for ~H to be well de�ned, q �Q(xs(�)� x) > 0 must hold for all x 2 [0; xs(�)]. This is equivalent

to

0 < q +Q(xs(�)� xs(�)): (20)

The sub-domain of the utility function [c; �c] is chosen as the �rst order condition:

[�a(c� f(xs(�))) + q]� [q �Q(xs(�)� x)] = 0 (21)

holds with c 2 [c; �c] for all x 2 [0; xs(�)] so that H�(x; q �Q(xs(�)� x)) is attained. That is,

c � f(xs(�)) +
Q

a
xs(�) and �c � f(xs(�))�

Q

a
[xs(�)� xs(�)] : (22)

Since limc&0 u
0(c) =1 and u0(c) <1, c > 0 must hold, or equivalently it must hold that

�Q
a
<
f(xs(�))

xs(�)
: (23)

If the triplet (a; q;Q) satisfy a > 0; q > 0; Q < 0 and the two inequalities (20) and (23), the conditions

(a), (b), and (d) in Theorem 1 hold with (x�(t); c�(t)) = (xs(�); f(xs(�))). Condition (c) in Theorem 1 is

satis�ed if @2 ~H=@x2 � 0 for all x 2 (0; xs(�)). @2 ~H=@x2 is written as

@2 ~H=@x2 � �(x; �; a; q;Q)

= �2b3Qx2 + [(3b2 + b3xs(�))Q� b3q]x+
1

a
Q2 � (b2xs(�) + �� 2b1)Q+ b2q: (24)
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Since � is a quadratic function of x and the coe¢ cient of x2 is �2b3Q > 0, ~H is concave if

�(0; �; a; q;Q) < 0 and �(xs(�); �; a; q;Q) < 0: (25)

Since �(x; �; a; q;Q) is continuous with respect to �, if we �nd the triplet (a; q;Q) with which the two

inequalities in (25) are satis�ed at the limit case of � = b1, then the inequalities are also satis�ed with

this triplet for � in a neighborhood of � = b1. Since xs(b1) = 0, �(0; b1; a; q;Q) < 0 is equivalent to

1

a
Q2 + b1Q+ b2q < 0: (26)

Since xs(b1) = 2b2=b3, �(xs(b1); b1; a; q;Q) < 0 is equivalent to

�2b2
�
b2
b3
Q+ q

�
+ �(0; b1; a; q;Q) < 0: (27)

From these, we have conditions for the triplet (a; q;Q):

a

2

 
�b1 �

r
(b1)

2 � 4b2q
a

!
< Q <

a

2

 
�b1 +

r
(b1)

2 � 4b2q
a

!
; (28)

and

b2
b3
Q+ q > 0: (29)

Let us choose

a =
4b2
(b1)2

�; � > q >
4(b2)

2

b1b3
�; Q = �2b2

b1
�; (30)

with � > 1. Then, (28) and (29) are satis�ed. We can show that (20) and (23) are satis�ed with (a; q;Q)

chosen as in (30). (20) holds for all � 2 (b1; �I) if

0 < q + (xs(b1)� xs(b1))Q = q +
2b2
b3
Q: (31)
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This inequality is satis�ed since from (30)

q +
2b2
b3
Q >

4(b2)
2

b1b3
�� 2b2

b3

2b2
b1
� = 0: (32)

Since

d

d�

f(xs(�))

xs(�)
=
f 0(xs(�))xs(�)� f(xs(�))

xs(�)2
dxs(�)

d�
> 0; (33)

f(xs(�)) is increasing in �. This implies that (23) holds for all � 2 (b1; �I) if

�Q
a
� lim

�&b1

f(xs(�))

xs(�)
= b1: (34)

This inequality is satis�ed with Q and a in (30) since

�Q
a
=

2b2�=b1
4b2�=(b1)2

=
b1
2
: (35)

We have veri�ed that with the triplet given by (30), all conditions in Theorem 1 are satis�ed. Therefore,

by Theorem 1, xs(�) is an optimal steady state for � 2 (b1; ��) in a neighborhood of � = b1. The equalities

and inequalities in the statement follow from (22) and (30).

At the end of this note, let us show that the model in the above proposition does not satisfy the su¢ cient

condition for xs(�) not to be an optimal steady state. The su¢ cient condition, which is proposed by Akao,

Kamihigashi and Nishimura (2019, Proposition 3.1), is

�2 � 4f
00(xs(�))f(xs(�))

�(f(xs(�)))
< 0; (36)

where � is the elasticity of marginal utility. �(f(xs)) is calculated from (14) as

�(f(xs(�))) =
�f(xs(�))u00(f(xs(�)))

u0(f(xs(�)))
=
af(xs(�))

q
: (37)
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Substitute (37) and (16) into the left-hand side of (36) and we have:

�2 � 4f
00(xs(�))f(xs(�))

�(f(xs(�)))
> �2 � (b1)

2

b2

q
b22 � 2b3(�� b1): (38)

It is easily seen that the right-hand side of (38) is strictly increasing in � and it takes zero at � = b1. That

is, for all � 2 (b1; �I),

�2 � 4f
00(xs(�))f(xs(�))

�(f(xs(�)))
> 0; (39)

and (36) never holds.
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