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Abstract

This paper investigates an optimal dynamic incentive contract between a risk-averse principal (system
operator) and multiple risk-averse agents (subsystems) with independently local controllers in continuous-
time controlled Markov processes, which can represent various cyber-physical systems. The principal’'s
incentive design and the agents’ decision-makings under asymmetric information structure are known
as the principal-agent (PA) problems in economic field. However, the standard framework in economics
cannot be directly applied to the realistic control systems including large-scale cyber-physical systems
and complex networked systems due to some unrealistic assumptions for an engineering perspective.
In this paper, using a constructive approach based on the techniques of the classical stochastic control
theory, we propose and solve a novel dynamic control/incentive synthesis for the PA problem under

moral hazard.
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I. INTRODUCTION

Large-scale infrastructure systems are composed of subsystems whose interests conflict. For analysis,
control and synthesis of these systems, there becomes a need to develop a novel system-theoretic
framework which requires well-ordered decentralized, distributed and hierarchical network control while
taking the different types of decision-makers into account (see e.g. [1], [2]). To achieve this from control
systems perspectives, notable examples include the local-action based approach [3], the multi-layered
control architecture based on time-scale decomposition [4], [5] and the passivity-based approach [6].

In this paper, we address a novel control/incentive synthesis problem motivated by the contract theory,
which is a quite different approach from the above control systems literature [3]-[6]. We focus on standard
cyber-physical systems including typical infrastructure systems in the presence of a dynamic principal
(system operator and utility) and multiple agents (subsystems) whose interests conflict and are dynamically
interdependent. The proposed control/incentive synthesis problem is to maximize the principal’s profit
while ensuring all the agents’ profit maximization. Actually, the principal and the agents independently
take control/incentive maximizing their own profit by using mutually different available information,
which is known as hidden action type asymmetric information and moral hazard [7], [8]. The decision-
making problem under the above physical model and information structures is called principal-agent (PA)
problem and their contributions are well-established as contract theory [7], [8].

In this paper, we discuss PA problems such that the infrastructure system obeys a standard continuous-
time controlled Markov model [9], [10], the risk-averse multiple agents have independent controls on a
finite time interval and the risk-averse principal has incentive variables to give the agents some rewards.
Recently, the contract theory for such continuous-time dynamical systems have been remarkably evolved
in economic field [11]-[19]. The dynamics discussed in [11]-[19] are economic models, which is rather
different from the physical-based control systems with the limited control dimension. Since we cannot
directly apply the solution presented in [11]-[19] to our problems taking the physical-based control
systems into account, we need to develop a novel control/incentive synthesis introduced below.

The contributions of this paper are summarized as follows.

First, we focus on the framework of the system model handled in the PA problems with the standard
continuous-time controlled Markov processes such that the system model is linear in control variables.
The Markovian control framework includes various infrastructure systems and cyber-physical systems
(see e.g. [9], [10] and therein). In all the papers [11]-[17] except [18], [19], the partial derivative of
the value function with respect to the state variable, called the shadow price or the adjoint variable, is

expressed as a function of the agents’ optimal control led by the so-called first-order condition (FOC).



The FOC corresponds to the stationary condition of the Hamiltonian with respect to the control variable
in the maximum principle or dynamic programming. To proceed the FOC approach, the following two
technical assumptions of system models are required. The first assumption is that the optimal control
must be interior to its (compact) domaih.The second assumption is that the partial derivative of the
vector field with respect to the control parameter at any time can be arbitrarily changed. Note that the
approach proposed in [18] does not use the FOC, while the second assumption above holds. As control
systems satisfying the FOC are extremely limited in the real world, this paper presents a novel approach
without the FOC in order to theoretically guarantee the optimality of control/incentive.

Second, we formulate our dynamic contract problem in the classical continuous-time Markovian control
framework [9], [10], and present a constructive method leading to an optimal contract (controls and
incentives). The previous works [11]-[19] for continuous-time models are developed in the weak solution
framework based on the measure transformation and the martingale representation [20]-[22]; the weak
solution formulation can discuss quite general stochastic control problems, and is suitable for qualitative
analyses but not good at constructing actually incentives and controls; actually, the design examples in
[12], [13], [19] are re-formulated as the classical Markovian control problem. In view of this, we formulate
our contract problem with the so-called strong solution framework dealing with the classical Markovian
control problem, so that, though the formulation is less general than the weak solution formulation, we
can develop a constructive approach in an intuitive way to our contract problem based on the Hamilton-
Jacobi-Bellman (HJB) equations and their classical solutions.

Third, our approach can be applied to multi-agent systems with mutual interests/conflict and dynamic
games. On the existing PA problems with continuous-time dynamical systems, as far as the authors
know, all the papers [11]-[13], [15], [16], [18], [19] except [14], [17] handle continuous-time dynamical
systems composed of a single principal andirggle agent. In case oiinteractive multi-agent systems,
we cannot directly apply the approach for the single-principal single-agent in [11]-[13], [15], [16], [18]
to our problem and we must develop a new method to solve our problem. The paper [14], [17] are the
literature for interactive multi-agent systems in continuous-time stochastic dynamical systems. However,
the paper [14], [17] adopt the FOC approach in the weak solution formulation, and so should face the
two issues stated above.

Lastly, regarding the contract problems under moral hararengineering there are relatively few

papers [23]-[25]. The paper [23] applies a PA-type moral hazard problem to a differential game between

1Even if the control range is a compact set, we can eliminate the first assumption by adding a suitable penalty term to the

objective function.



single-principal and single-agent in dynamical cybersecurity management. The paper [24] considers the
contract problem with both adverse selection and moral hazard between single-principal and single-agent
in static systems. Our previous paper [25] proposes an optimal control/incentive synthesis in the electricity
regulation market with discrete-time dynamical systems. However, the papers [23]-[25] do not reveal a
rigorous constructive method leading to an optimal contract between the principal and the multiple agents,
whereas this paper theoretically addresses a model-based optimal control/incentive design in a systematic
manner.

In summary, we formulate a novel type of control/incentive synthesis problem based on the PA problems
in the presence of a single principal and interactineltiple agents with mutual interests/conflict and
present a constructive approach without FOC within the classical framework of the continuous-time

controlled Markov processes.

II. MATHEMATICAL NOTATION

Then-dimensional Euclidean space is denoted®yy The partial derivative operators with respect to a
variablez are given byV, := a% andV? .= aa—;. A function f(x) is calledof classC™ atz € X if all its
derivatives of orders< r are continuous in a neighborhoodaf We denote by"(X') the set ofC" class
functions onX. A function g(x,y) is called of clas€™! (X x ))), sometimes denoted hyc C™!(X x ),
if all partial derivatives of orders< r at z € X and of order< [ aty € Y are continuous oY’ x ).

If » =1, then we denotg € C"(X x V). Let E, , andE, ,[v] denote the expectation operator and the
conditional expectation af given (¢, z), respectively. The notation¥’ andtr[Y'] stand for transposition
of a matrix or a vectotX and the trace of a square matiiix respectively. For notational simplicity, the
functionals with timet (e.g. f (¢, «)) will be sometimes written as the functionals with subsctifte.

ft(x)). Furthermore, meaningless arguments of functions and functionals will be sometimes omitted.

Ill. PROBLEM FORMULATION

In this section, we formulate our problem within a classical framework under the standard technical
assumptions in the risk-sensitive stochastic control and differential games [9], [26]. We also develop our
arguments based on the fundamental results and notations in [10].

This paper considerd’ risk-averse agents (subsystems) and a risk-averse principal (system operator).
Each agent € N := {1,2,..., N} executesu’ € R™ independently. Letz and «~* denote the

collection of all control profile and that of the control profile expeét i.e., u := (u!,...,+") and



u™t = (ul,. . ut T ut L ulY), respectively. Suppose that the stater) € R™ during the time

period T € [0, 7] satisfies a stochastic differential equation of the form:

dz; = f(r,2(7),u(r))dr + o (7, 2(7))dS-, (1)
fa(r),u(r) = fO(ra(r) + > fi(r ()i (r),
iEN

wherej, is aq(> n)-dimensional standard Brownian motioff, : [0, 7] x R"* — R”, f* : [0,T] x R" —
R™™: i€ N, ando : [0,T] x R® — R"*4. The system functiorf is linear in the control variable’.
The admissible controk’ of agenti € A at timet € [0, 7] is given by only the current state, i.e., a
Markov control policyu’ : [0, 7] x R® — U?, whereU’ is a compact subset &™. In this paper, lel"
denote the set of all such admissible decision rules of agehat is, ifu’ € I'?, u'(¢, z) is continuous at
t € [0,T] and Lipschitz continuous at € R™. Let us denote by'~* the admissible control set af .
With these notations, we will sometimes writec T' as (uf,u~%) € I x '~

To guarantee the existence of a classical solution of the system equation (1), we assume the standard
regularity conditions on the system functiofi§t,z), i € {0} UN, ando(t, ), that is(Al) f%, 0 €
C'([0, T] xR™) such thatf?, o, V. f* and V.o are bounded o0, 7] x R". Under this assumption, for an
admissible controk € ' := T'' x...xT'V and an initial condition:(¢) = z, (t,x) € [0, 7] xR", we have a
unique and continuous sample solution of the equation (1) (see, e.g. [10, Theorem V4.1]). Let us denote by
X (x,u) the solution, that is the state trajectory along the controlled Markov diffusions (1) with the initial
condition (¢, z) € [0, 7] x R™ and the controk € T'. The set ofX,(z,u) is denoted byX;. Furthermore,
for developing our dynamic programming (HJB equation) based approach in a mathematically sound
way, we assume¢A2) o is of classC? at 2 € R™ ando~! is bounded orf0, 7] x R™. This assumption
implies that the HIB equation is a uniformly parabolic equation (see [10, Chapter VI]).

To implement the dynamical system, each ageat\' independently decides its own contrdl(t, x)
according to the state at timet. In this case, the resulting system behavior is generally different from
what the principal desires. To incentivize the agents to take a suitable control for the principal’s objective,
let us formulate the salary function8? : [0, 7] x Xy — R from a principal to an agentec N. 2 In this

paper, following [11]-[15], the salary functional along the trajectory (1) is given by

T T
Wit, X¢(z,u)) = 0w’ (z7) + w(t,z) + / w' (7, )dr —I—/ w (7, 2, )dz,. (2)
t t

2As dx, includesw® and w' defined in (2) are mathematically redundant. Meanwhile, (2) is basically the same as the
normal literature [11]-[15] and we see from Lemma 2 that (2) is the only formulation satisfying the incentive compatibility

constraints (6b). Hence, we use (2).



The objective of our problem is that the principal determines the most suitable salary parameters
(wh, ..., wN), w' = (W, w0 w w?®) € II, i € N, before the agents’ implementatiofihe salary
parameterw’ is composed of the salary at terminal timé” : R® — R, the salary at initial time
w' : [0,7] x R — R and two kinds of salaries during the transient perio,: [0,7] x R — R and
w' : [0,T] x R — R™"_in the salary functional?’®. The setll is defined as the set of all feasible
salary parametera’ obeying the following conditionsw® is continuous on0, 7] x R®, w®, w'® €
C1([0,T] x R™) such thatw®, w®, V,w" and V,w* are bounded oii0, 7] x R", andw'! € C*(R")
such thatw’ and V,w'l are bounded omR", These conditions are the same as those for the cost
functions of the agents and the principal introduced below.

Each agent € N has the two cost functiong’ : R* — R and{’ : [0,7] x R® x I'¥ — R. Then, the

agent's reward functional® : [0, 7] x Xy — R is written by
T
U (t, X¢(z,u);w') = @' (z7) + / Ty zr,ul)dr + Wt Xy(x,u)). (3)
t

Given a salary parametes’ c I, the risk-averse ageritexecutes its own contral’ € I' maximizing

the following profit functionalJ; : [0,7] x Xy — R, i.e.,
Ji(t, X (2, u);w') := By [Vi(\Ifi(t,Xt(;U,u);wi))] , (4a)
vi(z) = —exp(—riz), (4b)
wherer; > 0 is a risk-aversion coefficient. We will show later the technical conditih®) for the
agents’ cost functionals together with those for the principal’'s cost functionals.

Meanwhile, the principal also has the cost functigis: R* — R and{® : [0,7] x R* x ' — R.

Then, the profit and reward functionals of the risk-averse principal are given by

Jo(t, Xe(z,u);w) = Eyp [1/0 (\Ilo(t,Xt(:c,u);w))] ) (5a)
vo(z) = —exp(—Rz), (5b)
T
WX w) = ) + [ O un)dr = W X)), (50)
t ieN

whereR > 0 is a risk-aversion coefficient. The agent’s cost functibrend?, i € N, and the principal’s

cost functions® and¢° satisfy the following assumptiongA3) I* € C*([0,T] x R" x U?), i € N/, and

19 ¢ CY(]0,T] x R™ x U) such thatl?, V,I* are bounded orj0, 7] x R" x U? and [, V" are bounded

on [0,7] x R* x U, and ¢* € C%(R"), i € {0} UN, such thaty’, V,¢' are bounded orR™. This
assumption imposes standard regularity conditions on the cost functions in the risk-sensitivity stochastic

control and differential games (see [9], [26]); under the assump(iahs—-(A3), we can show that the



HJB equations appearing in this paper have solutions of d&dg0, 7] x R"), by modifying slightly
Theorem VI16.2 in [10] for our problem setting.

The information structure of our contract problem is as folldwB21) Both the principal and the agents
share the physical model informatidif®, o) as public information. The principal receives all agents’
model information(f?, %, 1, ;) a priori; (B2) The principal can observe on-line state information
perfectly but cannot access or operate the agents’ on-line control informatoectly; (B3) Each agent
i € N receives the model informatioW* of salary in advance and the on-line salary parameteled
by (6) in real-time from the principal.

Now, we can formulate the following optimal incentive contract problem so that the principal determines
the optimal salary parametets:* For a given initial conditionz(t) = =, (t,x) € [0,7] x R, and a

prescribed profit levek(¢, z) of agenti € NV,

Jo(t, X DE 6a

rer S o X s (2

subject to 'l € arg malgc_ Ji(t, Xt(:z:,ui,u*”);wi), ieN, (6b)
urel™

Ji(t,Xt(asjuiT,u_iT);wi) > Vl(kié(l‘)), ieN, (6¢)

wherek? : [0, T] x R — R is continuous on0, 7] x R™. Obviously, the optimization problem (6a) of the
principal’s design parameters, i.e. salary parameterdepends on the agents’ control By solving the
problem (6), we acquire the optimal salary functionals and the agents’ optimal control policy. In contract
theory, (6) is called ®A problemunder moral hazard. The constraints (6b) and (6¢) are, respectively, called
incentive compatibilityconstraints andndividual rationality constraints [11]-[16], [18]. The constraint
(6b) claims that the salary incentivizes the agents to use an optimal control maximizing its own net
reward ¢, Consequently, the profile of control policies satisfying (6b) constitutes a Nash equilibrium.
The constraint (6¢) guarantees the prescribed profit level.

Note that the principal solves the optimization problem (6) before the agents’ implementation and
reports the optimal salary function®’™* to each agent € A in advance. The ageritc A/ does not
receive the optimal contral®* derived by (6) and can select its own contadlfrom U*? without restraint
in real-time. Since the principal selects the salary functididl satisfying the incentive compatibility

property, the reasonably optimal incentiV&”* can incentivize the rational agents to take the optimal

3See [27] in the context of the ancillary markets in dynamic power grids.

“From (6b) and (6c), an optimal depending onw is obtained. Therefore, to solve (6a), the principal needs to determine
not only the primal parameter but alsou associated withv. See Section IV for more details. Furthermore, we consider the
generalized control/incentive problem (6) on the future time interval from the arbitrary current &ne, 7] to the terminal

time T based on the time-consistency property so that we can discuss possibilities of several incentive options.



controlu™ desired by the principal; otherwise the irrational agent will reduce its own reward. As a result,
the agents have to implement the optimal controin real-time and the principal can know the optimal

controls selected by the agents in advance.

IV. OPTIMAL INCENTIVE CONTRACT

This section solves the optimal incentive contract problem (6) and obtaining optimal salary functionals
with and the agents’ optimal controls.

To solve the problem (6), let us first consider agents’ optimization problem (6b) and (6¢). Throughout
this section, we suppose that, for any salary parameters I x ... x II, time ¢ € [0,7] and state
r € R, there is a tuple of optimal controls’ = (u™*, u=™) € I'* x ' "¢, that is aNash equilibrium{26],
defined by

u™* € arg max Ji(t, Xi(x,ul,u=);0b), i e N. (7)

utel
Here, the multiple agents’ stochastic differential game (6b) decouplesNng@parate risk-sensitive
stochastic control problems. In other words, each agent\' controls onlyw! € T under the others’
Nash control policyu~*. Meanwhile, givent, z) € [0, T] x R", w®(¢, z) is independent of the selection
of u'. Then, given(t,z) € [0,T] x R andw € Il x ... x II, let V? : [0, T] x R™ — R be the agent’s

value function defined by

Vit x) := —vi(—wi®(x)) max J;(t, Xy (z,u’, u™"); w?). (8)

uieli
We here obtain the following lemma.

Lemma 1:Suppose that, for any € I x ... x II, there are a Nash equilibriuma* = (u**,u~") €
I'* xI'~* and the corresponding’ € C*2([0, T] xR™). Then, fori € A/, u=* € I'* andw € I x...xII,

u™ € I'" andV* obey a solution of the following HIB equation ferc [0, T7:
A 1 _
V. Vi(x) + Qtr (V2Vi(z)or(z)o-(z)']

+ max [V V@) fr(o, 0l ;™) = VoV (@)rios (@) (w8 ()or(2))

V@) [l ) 4+ wi (@) + wi (@) fo o, o ur )] = V@) S (@) (@) ]
= V.V (@) + 5tr [TV @ (@) )] + VaVi ) [l ur ) = i () (0 (2)or (1))
Vi) [T ul?) + o (@) + il (@) f; (@, 0 )] = rVi@) S| @os (@) =0, (9a)
VT, 27) = v;(w' (x7) + ¢'(27)). (9b)

Proof: See Appendix A. [ |



Lemmal and the following Lemmas 2 and 3 require fiat C12([0, 7] x R"), i € N. The assumptions
(A1)—(A3) are a sufficient (but generally not necessary) condition for this requirement [10].

From Lemma 1, the optimal control policy* is restricted by the HIJB equation (9). Then, we can
obtain an alternative form of the salary functiori&l’ based onl? by using (9). The original idea of
the representation of the salary functionals is from [11]; the next lemma is a modification and extension
of the representation result in [12] to our framework of multiple agents.

Lemma 2:Suppose that, for any € II x ... x II, there are a Nash equilibriumi* = (u™*,u=%*) € T
and Vi € C12([0,T] x R™) led by (9). ThenWi(t, X;(x,u',u~%)) can be expressed in the following

form:

Wi(t,Xt(az,ui,ufi*)) = —goi(xT) + hio(t,x)

T . . . —r; . T .
- [ s )+ S0 o a VP [ e, 0
t t
where
hio(t,x) = V;I(Vi(t,:r)) —|—wi0(t,x), (11a)
RE(t,z) = M +w(t, x). (11b)

(=ra)Vi(t,x)

Note that the function/; ! is the inverse function of;, i.e.,v; '(a) = (—1/r;)log,(—a).

Proof: See Appendix B. [ |
Lemma 2 implies that the HIB equation (9) & requires the salary functiond* (¢, X;(z, u’, u=%))
based on (10) along the state trajectory (1) with a control pdli¢yw—"*) on interval[t, T]. ° It follows
from the functional form of (10) that® defined by (11b) should be in the class wf*. From the
certainty equivalence property, by comparison (2) and (10), we afterwards only focus on the class of
the salary functional(t, X;(z, u®, u=%)) with the new salary parameter* = (w'*, w0 wi* wie*)
defined by

wl™(z) = —¢'(x), (12a)
w* (t,z) = h(t, x), (12b)
w'™ (t,x) = %\(h”(t,x)a(t, z)) |2 = B (t, z) f(t, z, u* (t, ) — I'(t, z, u™ (¢, ), (12c)
W' (t,z) = h®(t, x). (12d)

The new parameter constraints (12) are a necessary condition for optimal incentive. Furthermore, we

obtain the following lemma from Lemma 2.

5See [11, Theorem 6], [12] for the detailed economic interpretation of the salary funciici(a) X (z, ")) defined by (10).
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Lemma 3:Suppose that, for anw € II x ... x II, there are a Nash equilibrium* € I" and the
corresponding/® € CH2([0,T] x R™) led by (9). Then, forw™ € II, i € N, (12) with h? defined by
(11), Vi(t,r) = —1 and V. Vi(t,z) = 0 for all (t,x) € [0,7T] x R™.

Proof: Insert (12) into (9) and/? is given by the solution of the HJB equation:

0=V-Vi(z)+ %tr [VaVi@)or(z)or(a)] + VaVi(a) [fr(z,ur) = rio-() (b (x)or(2)))] , (13a)

VT, 2r) = 1(0) = -1, (13b)

T € [0,T]. Since (13a) is a linear parabolic equation, we see from the boundary condition (13b) that
Vi(t,r) = —1for all (t,x) € [0,T] x R™ is the unique solution of the HIB equation (13). This completes
the proof. ]

We see from (8), (12) and Lemma 3 that, for @llz) € [0, T] x R", J;(t, X;(z, u*); w*) = v;(h0(t, 2)).

Meanwhile, from the form of (12), we can parameterize the salary paramétebby using a Nash
equilibrium v* and a parametei’ = (h*°, h'®), i € N. In view of this and the characterization of the
value functions by Lemma 3, let us introduce a new parameterization of the salary functional (2) with
the salary functions given by (12) and the parametérs: (0, h'*) € H® x H® =: H, i € N, where
R [0, T) x R® — RY>™7 pi® . [0, 7] x R®" — RX>" and (h°, hi®) € HY x H* implies thath® is
continuous or{0, 7] x R™ andh™® € C'([0, T] x R™) such thath’*, V,h'® are bounded of0, T] x R".

Here, note that this parameterization includes the salary functionals of the form (10) with (11) that are
necessarily derived from the incentive compatibility constraints (6b) and, in other words, given as a
necessary condition for a Nash equilibrium of agents’ control defined by (7). MoreovEr=fl, then
Lemmas 1, 2, and 3 can be reduced to the results of the single agent problem discussed in [11]-[13],
[15], [16], [18].

When a set of parametets:= (h!,...,h"V) € H x ... x H is fixed, the salary functions* defined
by (12) and the Nash equilibrium* defined by (7) are determined dependently on the parameter
so as to clarify the relation between parameters, we sometimes défoteX;(z, u', u="*);u*, h’) and
w® (u*, h?). From now on, we regard € H x ... x H as design parameters of the salary functionals
and the agents’ controls.

Now we can state our main result for the multiple agents’ optimization making the incentive compat-
ibility constraints (6b) be fulfilled, which gives a constructive characterization of the Nash equilibrium
in T for the class of the salary function®@f?, i € N/, defined by (12) withh’ € H, i € N.

Theorem 1For (t,x) € [0, T|xR", u € T, u* € T* andh® € H,i € N, let Wi(t, Xy(z,u’, u~?); 1, h?)

be the salary functional. Then, € T is implementablgi.e., u' is a Nash equilibrium) if and only if
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spring
—AAM— mass — u'

O Yy

Fig. 1. Mass-spring system.

the following condition holds for ali € NV, (t,x) € [0,T] x R* anduf € T

u?(:c) € arg max hix(x)ft(m, ul, ut_“(aﬁ)) + li(x, u’) (14)

wels
Furthermore, for arbitrary’ € H, i € N, the value of the correspondirig’ is the same as one shown
in Lemma 3.
Proof: See Appendix C8 [
Under additional convexity assumptions on the control rarigesi € A/, and the cost functiong,
1 € N, we actually find a Nash equilibrium based on the characterization result of Theorem 1.
Corollary 1: Assume that, for eachh ¢ A, U’ is convex andl’ is of classC? at u' € U’ such
that V2,1* < 0 uniformly. Then, for eacht,z,p) € [0,T] x R" x R'*", there exists a functiop’ :

[0,T] x R® x R1*" — U satisfying
W (t,x,p) € arg glglﬁ(pf"(t, w)u’ + I (t,z,u')), (15)
such thatu® is continuous att, z, p) and Lipschitz continuous dtr, p). In addition, for each €
Wt (t, @) = pi(t, z, W (t, ), (16)

is admissible ¢' € T") and implementableu( is a Nash equilibrium).

Proof: The continuity ofu’ at (¢,x,p) follows from the uniqueness of the maximum (15) on the
compact seU*. The Lipschitz continuity afz, p) is shown by [10, Lemma VI.6.3], singef (¢, z)u’ +
Ii(t,z,u’) is Lipschitz continuous afz,p) and I’ is of classC? at u‘. Thus, by noting that™® is
continuous att and Lipschitz continuous at, we see that:! defined by (16) is continuous atand
Lipschitz continuous at;, so thatu' is admissible. The second statemest is a Nash equilibrium) is
straightforward from Theorem 1. This completes the proof. |

We here discuss distinctive features of our approach, compared with the so-called FOC approach [11]-

[16]. In our framework and approach, as we remarked just above Theorem 1, a Nash equilibruih

®Theorem 1 does not require the uniqueness of Nash equilibria.



12

which may be constructed by (14) in Theorem 1, should be given dependently on a design parameter
h e Hx...xH asu*(h). On the other hand, if we adopt the FOC approach in the same framework as
above, we should determine the paraméter # x ... x H as a functionh(u*) of a Nash equilibrium
uw* € I' by applying the FOC to the Nash optimality of (14) and regafrdc I" as a design parameter.
The construction of the parametgfu*) in the FOC approach requires a rather strict condition, e.g.,
the range ofV,: f is equal to that of the state, while the construction of the Nash equilibriuai(h)
requires just a solvability condition for the static game (14) (see, e.g., Corollary 1).

For example, let us now consider a well-known physical dynamic system, a mass-spring system with
a massl, the spring constarit and the applied force! € U' ¢ R as shown in Fig. 1. Then, we have

i +y = u', wherey € R is the displacement of the mass. Using= (y,)’, we also have

01 0

f(r,zul) = Lo x4+ ' ut . a7
~——
=fO(1,x) =f1(r,z)ut

SinceV,1 f(t,x,ut) = fi(t,x) = (0,1)', u* cannot directly operatg and the range o¥ .. f(t,z,u!)
is smaller than that of the state ¢ R?. Hence, the FOC approach cannot be applicable to even the
mass-spring system stated above.

We see from Theorem 1 that, givert (12) based ort?, each agent € A/ chooses an implementable
control policyw't € I'" (14). To express the parameters used.inclearly, let us denote by a function
w2 [0,T] x R® x H* — U’ the alternative representation off satisfying (14), i.e., (16).

We finally consider the selection af = (b, h'*), i € A'. From the above discussions, we can obtain
Theorem 2.

Theorem 2Assume that the same conditions in Corollary 1 hold. Suppose that, fér angh!, ..., hYV) €
H x ... x H, there is a Nash equilibrium’ = (u'f,... ™) € I = T x ... x 'V satisfying the
implementability condition (14). Then, the incentive contract problem (6) is equivalent to the optimal

control problem (18) under the salary functional led by (10):

sup  Jo(t, X (t,z,ul);w(ul, h)) (18a)

hicH,ieN
subject to u'f(7,&) = p'(,&, K™ (1,€)), (1,€) € [t,T] xR", i € N, (18b)
ROt x) > E'(t, z), ieN. (18c)

Proof: For anyh! = (h'°, hi®) € H, i € N, the principal selects the salary functional (2) with the
salary parameter (12) described ¥ (t,x) = u'(t,z, h®(t,x)), i € N. Sincey’(r,x, hi*(z)), i € N,

is implementable from Theorem 1, Lemma 1 is obviously satisfied. This completes the proof. m
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Theorem 2 means that the incentive contract problem (6) can be reduced to the control/incentive
synthesis problem with respect to design paramétdrem the systems and control perspective. We see
from (18) thath® and h** can be designed separately for satisfying (6¢) and (6b), respectively.

Let us first focus omh®(¢, z). From Theorems 1 and 2, given the initial time and stdtes), A%
is independent of the selection of and can be set arbitrarily frort® under the individual rationality
constraint (18c). Actually, giverit,z) € [0,T] x R™, we normally seth?¥(¢,z) such thath’®(¢,z) =
k(t,z) due to the principal’s profit maximization (18a) [11].

We next focus on the selection bf*, i € N. The design parametéi” is determined by the principal’s
optimization problem (18a) in the presence of the admissible and implementable controkpaliefned
by (18b). From Theorems 1 and 2, once the principal determines an apprdgtiate= A/, the optimal
u and the corresponding are automatically fixed from (16) and (12). In other words, by selecting a
design paramete’®, the principal can operate a Nash equilibrium led by agents to some extent.

To find a design parameté‘® in the principal’s optimization problem (18a), we first fix the agents’
decision functiong:?, i € A/, defined by (15), and solve the stochastic optimal control problem (18a) with
respect toh'*, i € N/, by using, e.g., the HIB equation approach (see [10, Chapter VI]). The existence
of i is guaranteed from Corollary 1, but it is generally difficult to acquire the analytical solution of
(16) except for limited problem formulation, e.g. the case of cost functions with a quadratic-form on
controls inU* = R™:, and the framework reduced to so-called bang-bang controls. In the next section,
we will consider a special case to solk& analytically. The existence of the analytical solution confirms
the advantage of our contract problem with thteong solution frameworklealing with the classical

Markovian control problem.

V. CONCLUSION

This paper have investigated an optimal dynamic incentive contracts between a risk-averse principal
and multiple risk-averse agents in continuous-time controlled Markov processes, which include various
infrastructure systems and cyber-physical systems. We have mainly proposed a novel control/incentive
synthesis problem under moral hazard. Our approach is based on the principal of optimality and the
solution of HIB equations. Thanks to the techniques, we have revealed that the proposed dynamic contract
incentivizes the agents to take a suitable control composed of a specific Nash equilibrium desired by the
principal.

One of the future works is to analyze the qualitative/quantitative property of the design parameter

h'* and investigate the trade-off between incentive and risk-sharing in the agency relationship. Another
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topic is to apply the proposed methodology to the power network systems with fast-regulation electricity

markets, whose technical issues are shown in [27].
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APPENDIX

A. Proof of Lemma 1

To derive the HJIB equation for a Nash equilibriurh € T', let us convert the Bolza-form original

problem to the Mayer form. As the local transient cost functioof agenti € A" and his salary functional

W satisfying the same regularity conditions as (1), for a Nash equilibtitia I and«? € I'?, we can

introduce an extra state variahité € R satisfying

dx, fr (s, Uira U;i*)dT + o7 (z7)dB;
dxt (27, ul)dT + wi (2 )dT + Wi (2, )dx,
fT Or
= | . ar+ | dfr. (19)
L+ wl + w f, w¥o,

Then, we introduce a value functidri’ : [0, 7] x R x R — R given by

Vit z,2°) = —vi(~w}(2)) max Bz o [vi(@®(T))], (20)

where z¢(7T") means the state at tiniE along (19) duringr € [¢t,T] with z(¢) = = and z°(t) = x°.

By using lto’s differential rule, we can derive the following HIJB equationidhfor all (r,z,z¢) €
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[0,T] x R™ x R:
VIVE VW, V.. V!

iy 1
0=V, V'(r,z,2° + =tr - -
20| | Ve ViV VeV

ool o (w0,
(o) [(wior) P

o o fT x, ui,u;i* i
+ max {[vggvg i [ s : } (21a)
utelU? l;(

z,ut) + w + W f,

Vi(T, zr,15) = vi(w' (1) + @' (z7) + 25) (21b)

On the other hand, from (3), (8), (19) and (20), sim¢@: + b) = —v;(a)v;(b) for arbitrarya,b € R and

26(T) = VUi(t, Xy(z, u?, u=");w) + ¢, we have
Vit,z,2%) = —vi(z®) x Vi(t, z). (22)
We substitute (22) for (21a) and obtain

0=V Vi (x)(—vi(z))

+1t
—tr
2

. . fr(, ul, us ™

—v(a)VaVEi(x) ri-vi(z°) VL V()
ri - vi(x€)Va Vi) 17 (=vi(z)V}(2)

{ o1(2)0r ()’ oT<x><wix<w>oT<m>>’”
(w

#(2)o, (2))or(2)  |(wi®(@)or(2))?

+ wit(z) + Wi (x) fr (z, ul, u; ™)
We here divide both sides of (23) byv;(z¢) > 0 and derive (9a) by using the standard properties of
the trace. From (2), (3), (4) (21b) and (22), the boundary condition (9byois easily obtained. This

completes the proof.

B. Proof of Lemma 2

Following to [11, Theorem 6] and [12, Theorem 4.1], let us consider the salary condition based on
the HJIB equation (9) fol’*. To derive the representation for the sharing rule, we now define the agent’s

certainty equivalen?’’ as
Vilt,a) = v 1 (Vit,2)) = (=)~ log (—V'(t,2)). (24)

By using Ito’s differential rule and (9a), the following equation holds for any [t, T':

dVi(e)  L1dVi(x)dVi(a)
(CrVi@) 2 (—r)(Vi(@)?

dVi(z) = x e R", (25)

where

. ] ; ;
av; = (9Vi 4+ gun [V3Viorol] ) dr + 0.V, 29)
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Then, from (9a) and (26),
dv? V. Vi

Crovi = v ™

+ (Z!(wi’”@)’P - ( (_VZ)V{/# + wi‘*) Fr(up) = (i) —w + 7y (Y::)/{T/i UT(wizaT)'> dr,(27a)

T

1 dviavi 1 [(VoVie:)|?
oY L A (s T s (270)
We substitute (27) for (25) and derive

av! = <—2(—ri)(thT)’]2 —hEfr— llT> dr + h*dz, — (wdr + wdz,)

(28)
whereh®® is defined as (11b). From (9b), (11a), and (24),
VT, z7) = w'l (1) + ' (z7), (29a)
T T
VT, zr) = Vi(t,z) + / AV = b, z) — w(t, z) + / dv?. (29b)
t t

Substituting (28) into (29b), we deform (29) and obtain (12) by using (2). The proof is completed.
C. Proof of Theorem 1

(Necessary Condition)We suppose that! € T is implementable (Nash equilibrium)* used in

Lemmas 1, 2 and 3 is replaced by from now on. Then, substitute the necessary condition (12) for the
replaced HIB equation (9) and obtain

0=V,Vi(x)+ %tr [V2Vi(z)o-(z)o(z)']
+ max Vo V(@) (o, urh) = Vo Vi@)rio, (@) (b (@)o, (2)))
—riVi(@) [P @) fr (g ) 4 B+ Vi) B @) fr (g ud) + el |

= VL Vi) + 5t [V2V (@) (@) ()] + VeV (@) [f2o, ) = rios () (1 (@) (2)')] , (302)

VYT, z7r) = 14(0) = —1. (30b)

As we see from Lemma 3 thaf’(z) = ;(0) = —1 and V. V;!(z) = 0 for all (¢,z) € [0,T] x R™, (30a)
can be replaced by

0=V,Vi(x)+ %tr [V2V!(z)o-(z)o-(z)']
+ max [(—n)Vf(a:) [hix(x)fT(x,ui’uT—iT) ()| = (—r) Vi) [hi””(x)fT(:c,ui) " li(wﬂ)”
=V, Viz) + %tr (V2Vi(z)or(z)o-(z)] . (31)
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Therefore, as-r;V,!(x) > 0 holds, we can obtain

r?eal}(i [hix(a:)fT(:B,ui,u;“) +li(m,ui)] = hi®(x)fr(x, uTT,uT ) + 1 (x, uT) (32)

which is just (14).
(Sufficient Condition) For ' € I" and h! € H, we consider the reward functiond@’ with the salary
functional W (¢, X;(x, u’,u~*); uf, h") composed of (2) and (12). Then,
\Iﬂ(t’ Xt(xv ui7 U_ZT)a UT7 hz)
T

= Wi (X, o', 0™ T);ul, BY) + ¢ (2r) + / (a7, ul)dr
t

T
= P(a)+ [ L(orub)r
t
[15
t 2
)

= 0w) =5 [0y Par+ [ b,

d (hfrma'f)/|2 +hzrmft(l'7'7uj—) +lz (:ET7 U :|d7— +/ hw fT L, U 7—7 U )dT+O-TdBT)

- U o ) 1 ) / U ) ) 0. (33)
Actually, as the profit functional of agetis given by (4), we substitute (33) for (4) and derive
Ji(t, Xy (, ul, u_ﬁ); ul, h) = Vi(hio(:n))lEt,m [exp [—; tT\(—nhi""aT)'PdT —l—/tT—nhixaTdﬂT”

T T
X exp [(—ri)/t (1 (g ™) + 8 (e, ) — (—ri)/t 1 o (it )+ I, )]dT] .
(34)
Now, we suppose that’ ¢ I' satisfies (14). Then, from (34),
Ji(t, X,y ) < g (h () B [exp H tT|<—nhizaT>'|2dT +f T—nhixaTdﬁTH . @)
Sincehi®(x)o, () is bounded orR”, the expectation term in (35) always takesHence,
Ji(t, Xy (z, vl u™); ul, Y < v(h(2)) = Ji(t, Xi(, u'T,u=); ul, hY) (36)

is obtained and.' is implementable (a Nash equilibrium).
From the above results, it is obvious tHat takes the value shown in Lemma 3. This completes the

proof.
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