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      Abstract 
 

This study examines the impact of “Enudge,” an artificial intelligence (AI) energy management 
system (EMS), on electricity consumption in the retail sector. As retail installations increasingly 

contribute to nonindustrial CO₂ emissions, conventional EMSs frequently fail to manage the complex 

and variable energy demands in these settings. By leveraging a difference-in-differences framework 

on store-level data from over 1,700 retail stores in Japan between November 2018 and December 2023, 

this study finds that installation of AI EMS-Enudge reduces electricity consumption by an average of 

1.9%. However, this reduction effect declines over time, with electricity savings diminishing within 

five to ten months. This decay effect is consistent with the decrease in user interaction with the 

recommendations provided by AI, suggesting that user engagement may play a crucial role in reducing 

electricity consumption. Heterogeneity analyses reveal that the system’s performance varies across 

retail establishments and seasonal contexts. Moreover, a cost-benefit analysis aimed at exploring 

break-even tariffs and implied abatement costs highlights that the installation of an AI EMS can 

contribute to cost savings, especially under high tariffs and higher-carbon grids.  
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1. Introduction 

The retail sector has become a pivotal area for energy conservation efforts because of its steadily increasing 

share of overall electricity consumption. Extended operating hours, high customer traffic, and electricity 

demands, such as food refrigeration and lighting, all contribute to this upward trend (Galvez-Martos et al. 

2013). In many advanced economies, retail and wholesale sectors account for a large proportion of non-

industrial energy-related CO2 emissions. For instance, the retail and wholesale sectors in Japan emit 

approximately 42.1 million tons of energy-related CO2, making them the largest emitters in the non-

industrial sector (Ministry of the Environment 2023). The combination of high electricity demand, seasonal 

fluctuations, increased foot traffic during holidays, and diverse consumer behaviors complicates energy 

management in the retail stores, often exceeding the capabilities of traditional strategies to achieve sustained 

reductions. Given that the retail sector plays a crucial role in urban energy consumption, developing effective 

strategies to optimize electricity use is essential for advancing sustainability goals.   

Energy management systems (EMSs) offer a promising approach to addressing these challenges by 

managing electricity demand through real-time feedback and monitoring. They have been widely adopted 

across various sectors, from household and microgrids to buildings (Doukas et al. 2007; Zhou et al. 2016; 

Zia et al. 2018). Although traditional EMSs can inform users and promote behavioral changes to reduce 

consumption, they may be insufficient in sectors with highly variable electricity loads and usage patterns 

because of their limited predictive and optimization capabilities. In contrast, artificial intelligence (AI) EMSs 

extend traditional frameworks by incorporating predictive analytics, analytical tools, automation strategies, 

and recommendation systems (De Paola et al. 2014; Sardianos et al. 2021). Empirical evidence suggests that 

such advanced systems can optimize and reduce energy consumption in multiple sectors (Ali et al. 2021; 

Mischos et al. 2023), raising the possibility that they may offer more adaptive solutions in complex 

operational environments, such as the retail sector. Despite growing interest in AI EMSs, their effectiveness 

in reducing electricity consumption in the retail sector remains unclear. Unlike other sectors where energy 

use is relatively predictable, the retail sector faces operational complexities such as holiday peak loads, 

customer traffic, and diverse consumption patterns.  

Existing studies have primarily focused on sectors in which energy consumption is influenced by 

individual user behavior, such as residential and academic settings (Aggarwal 2016; Cao et al. 2016). In 

households, intelligent EMSs have been shown to optimize electricity consumption and reduce costs by 

efficiently managing appliances (Nanda and Panigrahi 2016; Shareef et al. 2018; Vivekananthan et al. 2014). 
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Similarly, in academic buildings, systems that integrate recommendation features have effectively 

encouraged energy-saving behaviors by emphasizing both economic and environmental benefits (Sardianos 

et al. 2021). In the transportation sector, the integration of EMSs into hybrid and fully electric vehicles has 

improved energy efficiency (Anbazhagan et al. 2022; Jondhle et al. 2023; Song et al. 2023). However, its 

applicability remains unclear in the retail sector, which is characterized by high refrigeration and lighting 

demands, fluctuating foot traffic, diverse consumer behaviors, and complex store-level operational decisions 

that affect energy use—factors that distinguish them from residential, academic, and vehicular contexts. 

Given these distinctions, it is essential to investigate whether AI EMSs can effectively optimize electricity 

use in retail settings and contribute to long-term sustainability. 

This study examines the impact of “Enudge,” an AI EMS developed by i-Grid Solutions, on 

electricity reduction in the retail sector. Unlike existing EMSs, which rely independently on real-time 

monitoring or basic analytics, Enudge integrates multiple intelligent features into a single platform designed 

to efficiently reduce electricity consumption. By collecting and analyzing electricity consumption data for 

each store, Enudge can predict the power demand and automatically generate three targeted 

recommendations to guide users in reducing their consumption. This integrated approach may enhance 

energy efficiency across retail establishments, where conventional EMSs struggle to adapt to dynamic and 

variable electricity consumption patterns. 

To assess the impact of Enudge on energy consumption, we treat its installation as the treatment and 

employ a difference-in-differences (DiD) approach using store (installation)-level panel data from more than 

1700 stores from November 2018 to December 2023. DiD approach allows us to compare changes in 

electricity consumption in stores that installed the Enudge with those not installed. Importantly, DiD is 

particularly well-suited for this analysis as it allows control for unobserved time-invariant factors and 

measures the causal effect of Enudge installation. Our primary focus is on supermarkets, which form the 

largest sample group in our dataset and are characterized by high energy consumption, large installed 

capacity, and continuous operation. The empirical results indicate that installing Enudge leads to an average 

reduction of 1.9 % in electricity consumption for stores that adopt the system, highlighting the environmental 

benefits of AI EMSs with real-time monitoring, predictive analytics, and automated recommendations. The 

analyses are validated using several robustness tests. Beyond short-term reductions, this study also reveals 

the decay effect of Enudge on energy reduction during long term. Specifically, stores achieve the highest 

reduction in electricity consumption immediately after installing Enudge; however, this effect diminishes 
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and disappears within 10 months. To understand this phenomenon better, we conduct interviews at several 

stores that installed Enudge. Interviews provide further insight that while the most frequently used features—

AI-provided recommendations—can initially remind users of energy-saving actions, staff engagement with 

these recommendations decline over time, aligning with the observed decay effect. In some cases, stores 

even discontinue the use of Enudge, possibly due to staff turnover or the perception that they have already 

achieved sufficient savings.  

Furthermore, we extend our analysis to a diverse range of retail stores, such as drugstores, pachinko 

parlors, and home centers, to comprehensively assess Enudge’s applicability across different energy 

consumption patterns. The findings indicate that the impact of Enudge varies depending on a store’s energy 

consumption pattern, demonstrating that AI EMSs exhibit relatively high adaptability to different energy 

usage patterns across various retail sectors. Additionally, through seasonal analysis, we examine Enudge’s 

impact across different seasons, revealing that it contributes to electricity reduction in both summer and 

winter. These findings suggest that Enudge not only captures seasonal variations in electricity consumption 

but also guides users in improving their energy management under different temperature conditions.  

Beyond its empirical contributions, we provide practical insights for policymakers and industry 

practitioners to design more effective energy management strategies. Given the increasing adoption of AI 

EMSs, understanding their real-world impacts is important for shaping sustainability policies and business 

practices. Our findings highlight the need for policy incentives that encourage long-term engagement with 

AI EMSs as well as management strategies that ensure continuous user participation. By bridging the gap 

between technological innovation and operational implementation, this study contributes to a broader 

discussion on sustainable energy solutions in commercial sector. To extend our results to the perspective of 

cost control and climate objectives, we assess whether Enudge is cost-effective for stores and when policy 

support is needed by conducting a cost-benefit analysis. Our results highlight that differentiated policies 

should be motivated. In high-tariff or high-carbon grids, adopting an AI EMS may already be very attractive 

even without subsidies. In low-tariff grids, moderate, time-limited subsidies or performance-based incentives 

can bridge the gap while encouraging practices that can maintain energy-saving effects in the long term. 

The remainder of this paper is organized as follows: Section 2 discusses the background and 

hypotheses while reviewing the relevant literature. Section 3 presents the study’s empirical strategy and data. 

Section 4 presents the baseline and robustness checks. Section 5 provides a comprehensive analysis of the 

energy consumption of AI EMSs. Finally, Section 6 concludes the paper and summarizes the findings of the 
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empirical analysis. 

 
2. Background and literature review 
2.1. AI EMS “Enudge”  

In the context of environmental sustainability, AI has emerged as a key factor for improving EMSs and 

reducing energy consumption. The company i-Grid Solutions has developed an AI EMS, Enudge, designed 

to reduce electricity consumption in diverse operational settings1. Unlike other EMSs, Enudge integrates 

multiple advanced features, from data collection and deep learning models to recommendation systems 

within a platform. It can generate half-hour electricity consumption forecasts for up to the next day based on 

multiple predictive models constructed from a variety of source data, such as the last 12 months of electricity 

usage, temperature, weather information, and holidays. Through AI processing data on electricity 

consumption, environmental conditions, and user behavior, Enudge can achieve more precise forecasting 

and enhance decision-making processes for users, increasing their overall operational effectiveness and 

leading to energy reduction. 

Enudge emphasizes user interactions through a tablet interface that visually provides real-time 

prediction information. This intuitive platform not only enables users to monitor consumption trends and 

compare performance with reduction targets, facilitating user engagement and enhancing operational 

decision-making, but also conveys actionable insights into conservation to users. By leveraging its AI 

capabilities, Enudge can automatically provide three targeted recommendations based on predicted 

consumption patterns to guide users in conducting specific conservation actions. For instance, the interface 

may display recommendations: (1) Heat Exchanger Setting: “Switch from normal ventilation to total heat 

exchange to help maintain indoor temperature more efficiently”; (2) Air Conditioning: “Aim for a set 

temperature of 26 to 28°C to balance comfort and energy savings”; (3) Hand Dryer: “Turning off the heater 

can help reduce power consumption.” These recommendations are designed to support demand-response 

efforts and potentially contribute to grid stability. Although preliminary reports from the i-Grid Solutions 

company based on electricity data mentioned that Enudge might reduce electricity consumption by 2.6% to 

3.9% and peak reductions of up to 10.7%, these conclusions remain to be evaluated through empirical 

analysis. Detailed information on Enudge is provided in Appendix A. 

 

 
1 i-Grid Solutions is currently not accepting new applications for this service. 
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2.2. Literature review 

Recent advances in AI have opened new avenues for EMSs by enabling more than just real-time monitoring 

and data predictions. AI EMSs leverage multiple predictive models and automation features to process 

complex consumption data, potentially guiding more effective energy-saving actions for users through 

recommendation features. Rather than simply showing consumption data, AI EMSs dynamically convert 

data into actionable insights by forecasting electricity demand and automatically providing targeted 

recommendations that provide decisions and operational adjustments to users (Ahmad et al. 2021; Ahmad et 

al. 2022; Li et al. 2023).  

Although the promise of AI EMS is evident, the existing literature primarily focuses on residential 

or household contexts, typically relying on relatively small sample sizes. The literature on these sectors has 

shown their potential for improving energy conservation. In the residential sector, Sardianos et al. (2021) 

demonstrated the ability of intelligent systems to affect energy conservation behaviors through personalized 

recommendations for energy-saving tips tailored to occupants’ preferences and habits in buildings. Jain et al. 

(2012) illustrated how a system with eco-feedback features could improve user engagement and reduce 

consumption through the experiment with 43 participants in different types of buildings. In household 

settings, Zhou et al. (2016) highlighted how smart home EMSs improve energy efficiency and energy 

conservation, while Buckley (2020) showed that EMSs are effective in reducing electricity consumption, 

leading to a 1.9% to 3.5% electricity reduction using a meta-analytical approach.  

Despite these findings, the existing literature does not consider that the retail sector faces unique 

operational challenges. Retail stores typically face complex energy demands due to factors such as extended 

operating hours, high customer traffic, intensive refrigeration, and lighting requirements. Therefore, the 

applicability of the findings from residential or small-scale literature to the retail sector remains unclear. 

Recognizing this gap, we investigate the impact of an AI EMS on electricity reduction using a large sample 

of retail stores. Fig. 1 provides a framework showing how Enudge could contribute to electricity reduction 

under diverse operational conditions. 
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Fig. 1 The framework of how Enudge affects electricity consumption 

 

3. Empirical strategy and data 

3.1. Empirical strategy 

This study employs a DiD approach to estimate the causal effect of Enudge installation on energy 

consumption, which is a common approach for evaluating treatment framework (Fageda and Teixidó 2025; 

Gertler et al. 2016) and widely conducted in the recent existing literature (Gillespie et al. 2025; Lohmann 

and Kontoleon 2023). In this framework, Enudge installation serves as the treatment, with stores that install 

Enudge forming the treatment group and those that do not serve as the control group. To account for observed 

confounders and time-invariant unobserved heterogeneity, the model includes a set of explanatory variables 

and store-level fixed effects. Time-fixed effects are also incorporated to control for common shocks affecting 

all stores. The baseline regression model is expressed as follows: 

 

𝑌!" = 𝛼 + 𝛽 ∙ 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑!" + 𝛿 ∙ 𝑡𝑒𝑚𝑝!" + 𝜇! + 𝛾" + 𝜀!" .	 (1) 

 

Where 𝑌!" is the natural logarithm of electricity consumption for store i at time t. 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑!" is a binary 

variable that equals one if the store has installed an EMS. 𝜇! is the store fixed effects and 𝛾" is the time 

fixed effects. The model also includes a control variable, 𝑡𝑒𝑚𝑝!", that represents the average temperature 

experienced by store 𝑖 at time t. 𝛽 is the coefficient of interest.  

A key identifying assumption is that, in the absence of an Enudge installation, the trends for the 

control and treatment groups would be the same. The plausibility of this assumption (i.e., the parallel trends 

assumption) is verified in Section 4.3.1. To further validate the DiD estimation, additional robustness tests 

are conducted, including a placebo test and a causal effect analysis, employing a staggered DiD design to 
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account for heterogeneity in the timing of Enudge adoption across stores. 

 

3.2. Data 

We use monthly store-level data from i-Grid Solutions from March 2019 to December 2023. The sample 

consists of approximately 2,000 stores across 22 sectors, including supermarkets, drugstores, home centers, 

and pachinko parlors. The dataset includes electricity consumption and environmental variables such as 

temperature and frequency of recommendation activities. Although the sample encompasses multiple sectors, 

this study focuses on supermarkets. Supermarkets typically operate for long hours, experience substantial 

customer traffic, and rely heavily on refrigeration, lighting, heating, ventilation, and air conditioning systems 

to maintain appropriate conditions for their products. Given these characteristics, focusing on supermarkets 

as the largest subset of our dataset allows us to assess whether an AI EMS can optimize electricity 

consumption under diverse operational conditions.  

To ensure an accurate estimation of Enudge’s impact, this study adopts several data selection criteria. 

First, one key adjustment is the exclusion of data from the first month following the installation of Enudge. 

During this initial period, supermarket operations may be affected by activities such as system configuration, 

staff training, the calibration of energy management procedures, and adjustments to existing systems. These 

transitional activities can temporarily disrupt operational patterns, causing energy usage during this period 

to fluctuate unpredictably, potentially increasing because of installation-related activities or decreasing if 

sections of the store operate at a reduced capacity. By excluding this month, the analysis isolates stable post-

installation consumption patterns and mitigates confounding effects. Second, we remove observations in 

which the reported electricity consumption is zero to avoid invalid data points. Furthermore, stores with 

installed solar panels are excluded from the sample to eliminate the potential confounding effects of 

alternative energy-saving measures. Finally, observations below the 1st percentile and above the 99th 

percentile of electricity consumption are excluded from the sample. We ensure the reliability and validity of 

the empirical analysis by applying selection criteria to maintain consistency and representativeness. 

Fig. 2 presents a time-series plot of average monthly electricity consumption in kilowatt hours (kWh) 

for supermarkets over the study period. The data exhibit seasonal variations, with an increased energy 

demand observed during summer and winter. These peaks likely correspond to greater usage of air 

conditioning in summer and heating in winter. Additionally, there is a noticeable decrease in April 2020, 

coinciding with the COVID-19 pandemic. This decline can be attributed to the state of emergency declared 
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by the Japanese government during which many stores experienced operational disruptions or temporary 

closures. Descriptive statistics for the variables are presented in Table 1. 

 

 

Fig. 2 Monthly average electricity consumption 

Table 1 Summary statistics 

 Obs Mean S.D Min Max  

 Electricity (kWh) 50413 81316.51 85011.82 4985.52 659913.41  

 Temperature (Celsius) 50413 15.6 8.318 -10.24 29.84  

 Actions 50413 471.50 1006.45 0 9054  

 Installed 50413 0.69 0.46 0 1  

 

4. Result and robustness checks 
4.1. Baseline results 

Columns (1) and (2) of Table 2 show the baseline results based on Equation (1) using the two-way fixed 

effects (TWFE) estimator. Column (1) reports the results without the control variable (temperature), whereas 

Column (2) includes temperature as a control variable. The estimated coefficient of 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 in Column 

(1) is negative and statistically significant at the 1% level. The point estimate of 𝛽 is -0.020. When we add 

the control variable into Column (2), the estimated coefficient slightly changes to -0.019, still significant at 

the 1% level. The baseline results indicate that electricity consumption in stores that install Enudge decreases 
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by approximately 2% on average (which is reasonably close to, although slightly smaller than, i-Grid 

Solutions’ reported range of 2.6% to 3.9%), compared to what consumption would be without installation. 

It is important to note, however, that for the estimate to be interpreted as the average treatment effect on the 

treated (ATT), the parallel trends assumption must hold. We assess the validity of this assumption later. 

Although we are unable to disentangle the individual contributions of the EMS’s different features because 

of data limitations, we can provide several possible mechanisms that may explain this reduction. 

First, system features such as real-time monitoring and recommendations may motivate users to 

learn from feedback on energy conservation behaviors. This aligns with the findings of Lynham et al. (2016), 

which highlighted the importance of real-time information in improving energy conservation behaviors, 

attributing energy savings to a learning effect. In the case of Enudge, its tablet interface may function as a 

self-educational tool, enabling users to track and reflect on consumption patterns, potentially contributing to 

energy reduction. Second, by predicting energy demand and providing actionable recommendations for 

reduction, Enudge may encourage users to take energy-saving actions, thereby reducing electricity 

consumption. For instance, Enudge can recommend lowering refrigeration settings during peak energy 

periods to save energy without compromising the safety of refrigerated stock. This is consistent with the 

literature, which suggests that recommendation features enhance the efficiency of energy management 

practices (Sardianos et al. 2021).  

Table 2 The effects of the AI energy management system on electricity consumption 

 (1) 

(T0~30) 

(2) 

(T0~30) 

(3) 

T0~5 

(4) 

T0~10 

(5) 

T0~20 

𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 -0.020*** -0.019*** -0.039*** -0.044*** -0.036*** 

 (0.006) (0.007) (0.009) (0.010) (0.008) 

Control No Yes Yes Yes Yes 

Fixed effects Yes Yes Yes Yes Yes 

Observation 20947 20947 9817 13164 18341 

R-squared 0.916 0.914 0.919 0.917 0.917 

Notes: The dependent variable is the natural logarithm of electricity consumption. Columns (1) 

to (5) report the results for the full study period (T0–30), the initial stage (T0–5), the middle 

stage (T0–10), and the later stage (T0–20), respectively. Standard errors reported in parentheses 

are clustered at the store level. The control variable, 𝑡𝑒𝑚𝑝!", is included in all models. *p < 0.1; 

**p < 0.05; ***p < 0.01. 
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4.2. Results on short-term and long-term effects 

While the existing literature and our results demonstrate the potential of AI EMS in reducing energy 

consumption, the initial energy savings may gradually diminish over time, a phenomenon often referred to 

as the decay effect. Lee and Cheng (2016) reported such decay effects in industrial buildings and attributed 

them to factors such as operational changes and aging technologies. Similarly, van Dam et al. (2010) found 

that while home EMSs can achieve short-term reductions, user engagement may decline over time, leading 

to a gradual loss of energy savings. Kobus et al. (2015) highlighted that systems incorporating explainable 

and personalized feedback can maintain user engagement in the long term, mitigating the decay effect. Their 

findings suggest that when users clearly understand how certain behaviors contribute to energy savings, they 

are more likely to maintain energy-saving practices over time. Given these insights, it is crucial to examine 

whether the energy reductions persist or diminish over time because sustained energy savings are essential 

for achieving long-term efficiency gains through energy management (Tuomela et al. 2021).  

To explore the presence of decay effects, Columns (3) to (4) of Table 2 disaggregate the post-

installation period into multiple stages: the initial stage (months 1 to 5, denoted in the table as T0 to T5), 

middle stage (months 1 to 10, T0 to T10), later stage (months 0 to 20, T0 to T20), and the full study period 

in Column (2). Table 2 shows that, while reductions are observed in the initial stage, the impact increases 

and then gradually decreases from the middle to later stages. During the initial stage, the installation of 

Enudge reduces electricity consumption by approximately 3.82%, whereas the effect increases slightly to 

4.30% in the middle stage. Although the coefficient increases between these two stages, a Wald test suggests 

that the difference is not statistically significant (p = 0.24), indicating that while users might be in the process 

of early learning and familiarity, improving Enudge’s impact in the short run, the improvement from T0–5 

to T0–10 does not definitively exceed sampling variability. However, in the later stage, the coefficient 

decreases to 3.54%, suggesting a drop of approximately 0.8 percentage points relative to T0–10. This decline 

might be related to reduced user engagement with Enudge’s recommendations once the staff think their early 

improvements are sufficient and no further efforts are needed. Some store reports support such arguments, 

as many stores gradually decrease their compliance with recommendations over time, especially in later 

stages. The 1.9% reduction during the full study period (Column (2)) highlights the importance of strategies 

that continuously engage users in maintaining energy-saving behaviors to mitigate these decay effects.  

In the retail context, this decay effect may be more obvious, as employees have no direct financial 

incentives or benefits from energy conservation, and workforce turnover may reduce the impact on energy 
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reduction. Nonetheless, the Enudge can still play a significant role in reducing electricity consumption. To 

mitigate such a decay effect, the requirement for upgrades to the Enudge re-engaging users and possibly 

reminding them of the advantages of continuous energy management to further reduce electricity 

consumption may be needed. 

 

4.3. Robustness checks 

4.3.1 Parallel trends assumption  

A fundamental assumption for the TWFE estimator to provide a consistent estimate of the 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 in a 

DiD setting is a parallel trend assumption. This assumption states that in the absence of treatment, the 

outcome variable in the treatment group would have evolved in the same manner as that in the control group. 

In other words, we assume that, conditional on store and month fixed effects and observed covariates, stores 

that install Enudge would follow the same trend in electricity consumption as stores that have not installed 

the system. However, this requirement can easily fail in this study. For instance, stores may schedule 

installation immediately after an unusually high-load month; stores with steadily high loads may be more 

likely to install; or installation may occur just before summer or winter. Any of these may create pretreatment 

trends for the installed stores, even before Enudge is installed, and the DiD approach would then attribute 

those trends to the system. 

To diagnose this, we assess the validity by examining whether the pre-installation trends are parallel 

using the following specification, even though the assumption could not be directly examined. We define a 

set of binary indicators that capture the relative time (in months) from the installation of Enudge for each 

store. Let 𝑇!  denote the installation time for store i. For each 𝜏  in a specified set 	𝑇!  (e.g., 𝜏 =

−10,… ,−2, 0, … , 29), we define the indicator variable: 

 

𝐷!"# = B1, 𝑖𝑓	𝑡 − 𝛵! = 	𝜏
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	 . (2) 

 

where 𝜏 = 	−10	represents ten months before the installations, 𝜏 = 	−2 represents two months before the 

installations, 𝜏 = 	0 represents one month after the installation as we remove the installation month due to 

the potential bias. 𝜏 = 	−1, which represents one month before the installation, is set as the baseline period. 

We then estimate the following regression: 
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𝑌!" = 𝛼 +I 𝛽# ∙ 𝐷!"#
#

+ 𝛿 ∙ 𝑡𝑒𝑚𝑝!" + 𝜇! + 𝛾" + 𝜀!" . (3) 

 

 The estimated coefficients on 𝛽#  capture the dynamic effects of treatment relative to the 

installation month, which are plotted into Fig. 3: without (Fig. 3a) and with (Fig. 3b) the control variable, 

respectively. During the pre-treatment period, the trends in electricity consumption between the treatment 

and control groups exhibit general alignment, as reflected in the coefficients remaining close to zero with 

only minor fluctuations. This suggests that prior to the installation of Enudge, there were no significant pre-

existing differences in electricity consumption trends between supermarkets that later introduced the Enudge 

and those that did not. These findings support the validity of the parallel trend assumption, suggesting that 

our estimator provides a consistent estimate of the ATT. Moreover, comparing Figs. 3a and 3b, we observe 

similar pre-treatment trends, suggesting that including or excluding temperature as a control does not alter 

the pre-treatment trend between groups. This similarity further strengthens the robustness of our 

identification strategy, indicating that our baseline results are unlikely to have been driven by the inclusion 

of this control variable. 

 

 

Fig. 3a Dynamic effects of Enudge on electricity consumption without control variable 
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Fig. 3b Dynamic effects of Enudge on electricity consumption with control variable 

 

4.3.2 Placebo test 

While the baseline result demonstrates the impact of Enudge on electricity reduction, it is essential to confirm 

that these reductions are precisely attributed to the implementation of the Enudge (Chetty et al. 2009). The 

DiD estimator may capture other effects if the treatment timing aligns with other common shocks or when 

the sample is aggregated over time. Specifically, if the installation months coincide with months in which 

many stores reduce electricity, for instance, headquarters try to conduct a summer conservation action, or 

demand reduces after the peak seasons, the DiD estimator will attribute such a decline to Enudge. To confirm 

the potential effects of such specific timings and structures, the appropriate test is to keep the outcome exactly 

as observed and to reallocate the installation month. In practice, we conduct counterfactual exercises by 

randomly reassigning the installation timing across different periods (in-time placebo) and to different stores 

(in-space placebo). The basic principle is to verify whether the methods employed in our main analysis 

produce valid results; that is, the estimates are close to zero when applied to a placebo scenario in which no 

actual treatment occurs (Abadie et al. 2015; Athey and Imbens 2022). The reduction effects under these 

placebo conditions would indicate methodological problems rather than a genuine causal effect, thereby 

casting doubt on the validity of our baseline estimates (Bertrand et al. 2004). 

This study primarily follows the procedure outlined by Ferrara et al. (2012), which generates a 

counterfactual installation month for each store by randomly shifting the installation period forward or 

backward so that the assigned distribution remains consistent with that of the actual treated group. We repeat 
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the random assignment 500 times to obtain the distribution of the counterfactual estimators. Fig. 4 plots the 

density distribution of the counterfactual coefficients, in which the distribution is concentrated at 0, with a 

median value of -0.0003. This indicates that in the placebo test, the true estimated ATT (dashed line) is less 

than the value of the 5th percentile of the counterfactual estimators (solid line), indicating that there is no 

significant effect in these counterfactual datasets and the baseline results are unlikely to be spurious (Li and 

Meng 2023). Therefore, we conclude that the reduction in electricity consumption can be attributed to the 

installation of Enudge. 

 

 

Fig. 4 Placebo test 

Notes: Kernel density is applied to the coefficient values with an adjusted bandwidth to ensure a smoother 

representation of the density curve. This is performed to improve the interpretability of the plot, allowing a 

clearer visualization of the overall trend. It is important to note that this adjustment does not alter the underlying 

values of the data; rather, it improves the visual clarity of the distribution for better presentation. 

 

4.3.3 Causal effects with staggered adoption 

Stores installed EMS at different points in time, leading to staggered treatment adoption. In such settings, 

the TWFE estimator may fail to provide a consistent estimate of ATT because of treatment effect 

heterogeneity (De Chaisemartin and d’Haultfoeuille 2020; Goodman-Bacon 2021; Sun and Abraham 2021). 

For instance, the TWFE estimator may compare stores treated earlier with stores treated later, although both 

eventually receive treatment. If treatment effects vary across installation cohorts or over time, this can lead 

to biased estimates as some groups may receive negative weights, distorting the true treatment effect. 
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To address these challenges, based on Goodman-Bacon (2021) and Barwick et al. (2024), we first 

restrict our control group to stores that are not yet treated at each relative period, rather than including stores 

that always are never treated. Second, we employ the nonparametric estimator introduced by Callaway and 

Sant’Anna (2021). This approach estimates treatment effects by defining treatment groups based on their 

adoption timing, constructing a comparison group composed of units that have not received treatment at that 

time (Chen et al. 2024), and taking advantages on using all available information (Schaub et al. 2025). We 

estimate that group-time ATTs follow the standard nonparametric DiD estimator:  

 

𝐴𝑇𝑇$," = 𝔼L𝑌!,"(𝑔) − 𝑌!,"(0)	|	𝐺! = 𝑔R, (4) 

 

where 𝐺! 	denotes the month in which store 𝑖 installed Enudge. Each cohort is defined by the specific month 

that a supermarket installed the Enudge. 𝑌!,"(𝑔) is the electricity consumption at month t for store i in 

treatment cohort g. 𝑌!,"(0) is the electricity consumption at month t for store i if it is not yet treated at month 

t. We tried to estimate group-time 𝐴𝑇𝑇$," with a doubly robust estimator that combines outcome regression 

and inverse probability weights constructed from the generalized propensity score following Callaway and 

Sant’Anna (2021). However, because of limited data on store characteristics beyond temperature, we cannot 

efficiently compute inverse propensity weights to balance the control group. Therefore, we rely solely on 

regression adjustments within the Callaway and Sant’Anna (2021) framework. Once we estimate 𝐴𝑇𝑇$," 

for installed cohort and installation month, the overall ATT aggregated by 𝐴𝑇𝑇S$," can be represented by:  

 

𝐴𝑇𝑇 =I I 𝑤$,"
"$

𝐴𝑇𝑇S$," , (5) 

 

where the weight 𝑤$,", is denoted by 𝑤$," = 𝟏{𝑡 ≥ 𝑔}𝑃(𝐺 = 𝑔|𝐺 ≤ 𝑇)/(𝑇 − 𝑔 + 1). The 𝑤$," is crucial 

for aggregating the treatment effects across cohorts and can be chosen based on the relative frequencies of 

the cohorts in the treated population or to equally weigh different cohorts (Callaway and Sant’Anna 2021; 

Roth et al. 2023).  

Table 3 presents the results from the staggered DiD approach using regression adjustment estimators 

for the full sample (T0–30) is -0.018, while the ATT for the initial stage (T0–5) is -0.028, indicating a 

significant impact of Enudge on electricity reduction, consistent with the baseline findings and confirming 
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the reliability of our estimates. Additionally, the results for the initial stage suggest a larger impact during 

the early months following Enudge installation, which aligns with the findings in Section 4.2. The robustness 

of these findings across multiple methodologies and time periods further reinforces the conclusion that 

Enudge effectively reduces energy consumption in supermarkets. 

 

Table 3 The effects of Enudge on electricity consumption with staggered adoption 

 (1) (2) 

ATT -0.018* -0.028*** 

 (0.010) (0.010) 

Fixed effects Yes Yes 

Observation 20948 9819 

Period Full sample Initial stage 

Notes: This table reports the aggregation of the overall ATT coefficients based on regression 

adjustments. Observations not yet treated are used as controls. Bootstrap standard errors 

are clustered at the installation level. Standard errors are reported in parentheses. *p < 0.1; 

**p < 0.05; ***p < 0.01.  

 

5. Further analyses 

5.1. Heterogeneous effects across sectors 

While the results indicate the effectiveness of Enudge to reduce electricity consumption in supermarkets, the 

varying characteristics of stores within the retail sector suggest the need for a detailed heterogeneity analysis. 

Therefore, we also examine stores such as pachinko parlors, home centers, and drugstores to further assess 

the impact of Enudge. These stores are chosen because of their distinct retail activities and energy-usage 

patterns, providing a comprehensive view of the Enudge’s impact across different retail sectors. 

The results are shown in Table 4, with Panels A–C corresponding to different store types. Pachinko 

parlors (Panel A) operate for extended hours and rely on continuously running electronic gaming machines. 

In the analysis, the ATTs are not statistically significant across all periods, suggesting that Enudge does not 

effectively reduce electricity consumption throughout the sample periods. This suggests that owing to their 

continuous and intensive energy demands, Enudge is not sufficient to achieve substantial and sustained 

energy reductions in these establishments. Similarly, in home centers (Panel B), which are characterized by 

expansive retail spaces with fixed installations such as lighting and air conditioning, the ATTs are only 
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significant at the 10-month stage and become insignificant later. Primary energy usage in home centers is 

associated with fixed installations, which may be less amenable to ongoing adjustments, indicating that the 

potential for additional savings is limited in such settings.  

In contrast, drugstores (Panel C), which require strict temperature control to preserve medications 

in confined spaces, present a significant reduction effect in the early stages, ranging from 10.24% to 11.93%. 

However, the effect rapidly decays to 4.78% by the twentieth month and becomes insignificant by the 

thirtieth month. This decay may have been influenced by several factors. The early effects in drug stores 

likely result from the immediate adjustment of Enudge’s recommendations with the operational need to 

maintain precise temperature control. However, such reductions quickly diminish, possibly because of 

challenges in sustaining adherence to recommended practices, suggesting that even in settings with strong 

initial achievement, long-term engagement may be difficult to maintain. 

Table 4 Heterogeneity in the effects across sectors 

Period T0~5 T0~10 T0~20 ATT (T0~30) 

Panel A: Pachinko parlors     

ATT -0.035 -0.033 -0.033 -0.022 

 (0.031) (0.030) (0.024) (0.016) 

Observation 1546 2008 2339 3053 

R-squared 0.925 0.924 0.929 0.938 

Panel B: Home centers     

ATT -0.004 -0.047* -0.021 0.015 

 (0.036) (0.028) (0.016) (0.015) 

Observation 3622 4839 5934 8188 

R-squared 0.961 0.964 0.965 0.963 

Panel C: Drug stores     

ATT -0.108*** -0.127*** -0.049*** -0.015 

 (0.021) (0.021) (0.011) (0.012) 

Observation 3003 4079 5128 7970 

R-squared 0.904 0.908 0.889 0.888 

Notes: Standard errors reported in parentheses are clustered at the store level. The control variable and 

fixed effect are included in all panels. *p < 0.1; **p < 0.05; ***p < 0.01. 
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5.2 Seasonal effects on electricity reduction 

It is important to consider seasonal effects on electricity consumption because energy usage may vary across 

different times of the year, depending on external climatic conditions and their impact on heating, cooling, 

or lighting needs in the retail sector. To assess the effectiveness of Enudge across different seasons, we focus 

on the first three months following installation to minimize the dilution of seasonal effects, comparing 

installed stores to stores that have not yet installed the Enudge. By examining the impact in spring, summer, 

autumn, and winter separately, we aim to investigate how different environmental conditions affect Enudge’s 

performance. 

The results of the impact of Enudge on electricity consumption are shown in Table 5, indicating 

significant reductions in electricity consumption during summer, autumn, and winter. This suggests that 

Enudge is effective under different climatic conditions and demonstrates its adaptability to varying energy 

demands. In the summer months, for instance, energy consumption increases because of the need for cooling, 

as air conditioning systems are heavily utilized to maintain comfortable indoor temperatures. Enudge may 

contribute to energy savings by optimizing cooling operations through recommendations based on predictive 

analytics. In the winter months, heating requirements become the primary driver of the increase in energy 

consumption. Although heating systems often require a stable and continuous energy input, Enudge can 

assist in managing these demands by offering insights into the optimal temperature settings and scheduling 

heating operations more efficiently. For instance, the system may suggest reducing heating during off-peak 

hours or implementing gradual temperature adjustments that align with store occupancy patterns.  

However, autumn shows the largest reduction in energy consumption compared to summer and 

winter. One possible explanation for this reduction is that prior to Enudge installation, stores may not have 

fully recognized or optimized their electricity consumption patterns during autumn. Unlike summer and 

winter, where consistent use of air conditioning or heating systems is expected, autumn represents a 

transitional period. During this season, managers and staff may overlook opportunities to optimize electricity 

use, potentially leading to energy waste. By installing Enudge, stores can better understand their 

consumption patterns, leading to greater improvements and energy savings that may not have been 

previously identified. However, no significant impact is observed in spring. Relatively mild temperatures 

and reduced reliance on specific energy-intensive equipment may limit system interventions during this 

transitional season.  

These findings indicate the consistent effectiveness of Enudge across different seasons, highlighting 



 
 

20  

its capability to adapt to seasonal variations in energy consumption patterns. This adaptability is crucial for 

retailers seeking to optimize energy use year-round, as it ensures that energy savings are not limited to a 

particular season, but are sustained throughout the year. In summary, these findings highlight the importance 

of AI energy management solutions. Retailers can leverage Enudge to achieve consistent energy reductions 

and offer appropriate guidance across multiple seasons. 

 

Table 5 The seasonal effects of Enudge on electricity consumption 

 (1) (2) (3) (4) 

Electricity consumption Spring Summer Autumn Winter 

ATT 0.011 -0.038** -0.091*** -0.036*** 

 (0.015) (0.015) (0.024) (0.012) 

Controls Yes Yes Yes Yes 

Fixed effects Yes Yes Yes Yes 

Observation 6810 6757 6692 6741 

R-squared 0.953 0.959 0.943 0.961 

Notes: Standard errors are reported in parentheses and clustered at the store level. The analysis differentiates seasonal effects 

by categorizing the sample into summer (June to August) and winter (December to February). *p < 0.1; **p < 0.05; ***p < 

0.01.  

 

5.3 Discussion on AI-provided recommendations 

While this study cannot fully analyze the impact of AI-provided recommendations owing to data limitations, 

the varying effects observed across different retail stores hint at the potential influence of these 

recommendations on users’ energy conservation practices. This section discusses the possible connections 

between AI recommendations and energy conservation, although these insights are derived from store visits 

and data observations rather than from empirical analysis.  

During store visits, interviews with managers reveal that AI-provided recommendations displayed 

via and accessed through the system’s interface are among the most frequently used features by the staff. AI-

provided recommendations appear to serve as continuous reminders, potentially encouraging store managers 

and staff to adopt energy-conserving actions. Regular interactions with and adherence to these 

recommendations by managers and staff may influence operational decisions related to energy management, 
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which could contribute to reductions in electricity consumption.  

To further confirm the potential impact of AI-provided recommendations, Figs. 5a and 5b show the 

trends in the frequency of following recommendations and the number of stores that installed the system 

over time. Fig. 5a shows the total count of recommendations followed alongside the mean count per active 

installation, separating scale effects from changes in engagement. Both the total and average number initially 

increase sharply following Enudge installation but begin to decline steadily after approximately five months. 

This pattern is similar to the short- and long-term effects discussed in Section 4.2, indicating that user 

engagement with the recommendations may partially explain the higher initial electricity consumption 

reductions. 

Complementing this observation, Fig. 5b presents the total number of stores with active Enudge 

installations (“All stores”) and stores with displayed recommendations but zero follow-through (“Stores with 

0 recommendations”). Fig. 5b shows a rapid decrease in zero-recommendation stores in the initial five-month 

period after installation, suggesting high initial engagement as more stores interact with Enudge. However, 

after the initial stage (approximately five months), the number of stores not following recommendations 

stabilizes, which aligns well with the earlier discussion on diminishing energy reduction effects in the longer 

term. Over the same period, the total number of active installations decreases slightly, reflecting natural 

attrition such as system discontinuations. Combining these insights, we infer that the observed decreasing 

impact on electricity consumption reduction might be linked to declining or stagnant recommendation 

engagement, highlighting the critical role of the effectiveness of AI-provided recommendations in sustained 

user interaction and achieving long-term energy savings. This pattern aligns with Enudge’s design, which 

promotes energy savings by presenting recommendations whose effectiveness depends on whether the staff 

follow them. 
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Fig. 5a Trends in AI-provided recommendations 

 

 

Fig. 5b Number of stores 
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5.4 Cost–benefit analysis 

Although our empirical results show that Enudge reduces supermarkets’ electricity use, its adoption and 

promotion often depend on economic factors. In practice, retail stores evaluate whether bill savings cover 

service fees (private margin) and, where they do not, whether social benefits (e.g., avoided CO₂) justify 

policy support (social margin). To make our results applicable across price and grid contexts, we translate 

the estimated reduction into kWh savings per store-month and show the break-even electricity price at which 

the system pays for itself. 

This study maps the DiD estimate 𝛽[  in equation (1) for electricity consumption into a percentage 

reduction 

 

𝜃 = 1 − 𝑒&' , (6) 

 

and multiplies it by the counterfactual baseline monthly consumption 𝐶 drawn from the pre-period. The 

implied monthly saving per store is  

 

∆𝐶 = 𝜃 ∙ 𝐶. (7) 

 

With a monthly service fee 𝐹 , the break-even tariff is  

 

𝑝∗ =
𝐹
∆𝐶 =

𝐹
`𝜃 ∙ 𝐶a

. (8) 

 

If the local tariff 𝜋 (JPY/kWh) > 𝑝∗, the system is cost-saving; if 𝜋 < 𝑝∗, the system does not pay for 

itself through bill savings alone. A minimal per-store monthly subsidy (𝑆) that restores private break-even is 

 

𝑆 = 𝑚𝑎𝑥{0, (𝑝∗ − 𝜋)} ∙ ∆𝐶. (9) 

 

We use the pre-period store-level mean as the primary baseline and assess robustness to outliers by shrinking 

the store-level pre means at the 1% and 3% tails before averaging.  

Using the service fee of Enudge 𝐹 = 19,600 JPY and the estimated ATT in Table 3 Column (1) 
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𝛽[ = -0.019 (supermarkets), this study obtains 𝑝∗ ∈ [11.9, 12.5] JPY/kWh across mean baseline and two 

tails, which implies that the per-store monthly saving ∆𝐶  is 1550 to 1650 kWh per store-month. This 

indicates a robust result that if a retailer’s tariff 𝜋 exceeds 12 JPY/kWh, Enudge can pay for itself through 

electricity bill savings; if 𝜋 is lower, the gap (𝑝∗ − 𝜋) quantifies the minimum subsidy (𝑆) needed for 

private break-even.  

For instance, the tariffs of regions served by the Tokyo Electric Power Company (TEPCO), which 

supplies electricity not only to households but also many large commercial customers such as supermarkets 

and other retail installations, are 18–20 JPY/kWh for such customers, with higher unit prices in summer 

(approximately 19.9 JPY/kWh from July to September) and lower prices in the remaining months 

(approximately 18.8 JPY/kWh). Using these TEPCO unit prices as π, while we are unable to access the store 

level prices, we can compare them directly to the break-even price on average. Because TEPCO’s 

commercial tariffs are above the break-even range, private savings from reduced consumption exceed the 

Enudge monthly subscription cost. Specifically, multiplying per-store monthly saving ∆𝐶  by TEPCO’s 

tariff yields bill savings of approximately 30,000 to 32,000 JPY per month. Considering the service fee for 

Enudge, this implies that each store can earn a positive net benefit of 10,000 to 12,000 JPY per month, 

suggesting that for high-tariff grids such as the Tokyo metropolitan area, the installation of an AI EMS can 

be justified from a financial perspective. In contrast, in regions where electricity tariffs are lower, 

governments can subsidize AI EMS adoption to help stores engage in electricity conservation.  

From a climate perspective, kWh savings translate into emissions reductions that depend on the 

carbon intensity of the grid. While this study is unable to access information on grid emission factors, we 

can still provide an equation on the monthly CO₂ emissions saving per store: 

 

∆𝐸 = 𝑔 ∙ ∆𝐶, (10) 

 

where 𝑔 denotes the grid emission factor (kgCO₂/kWh) and ∆𝐶 denotes per-store monthly savings. We 

can further provide an equation on the abatement cost: 

 

𝐴𝐶∗ =
𝐹 − 𝜋∆𝐶
∆𝐸 =

𝑝∗ − 𝜋
𝑔 × 1000	. (11) 
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This equation shows that, as carbon intensity 𝑔 increases, the abatement cost 𝐴𝐶∗ decreases, making the 

EMS relatively more socially cost-effective in more carbon-intense grids. Combined with equation (8), we 

can see that EMS adoption is attractive for the private margin where tariffs exceed 𝑝∗ and for the social 

margin where 𝐴𝐶∗ is lower.  

In practice, we do not observe installation-specific grid emissions factors during the study period. 

We therefore provide an illustrative calculation using TEPCO’s published emission factor 𝑔 =	0.421 

kgCO₂/kWh in 2024 and the estimated electricity savings of ∆𝐶 ∈ [1550, 1650] kWh/month. We then 

obtain the monthly CO₂ emissions saving per store ∆𝐸 = 𝑔 ∙ ∆𝐶 ≈	0.653–0.695 tCO₂/month based on 

TEPCO’s emissions factor. For electricity tariffs in the TEPCO area (𝜋 is 18.8–19.9 JPY/kWh), we obtain 

 

𝐴𝐶∗ ≈ −	19000	to	 − 15000	JPY/tCO₂. 

 

This indicates that, under TEPCO-area prices, Enudge can deliver cost-saving abatement without subsidies 

or supports. However, for low-tariff contexts (𝜋 < 𝑝∗), 𝐴𝐶∗ quantifies the magnitude of support required 

to make adoption privately attractive. Importantly, recognizing the value of CO₂ abatement further 

strengthens the case and expands the range of contexts in which installation is attractive. If the carbon price 

is 𝑝) (JPY/tCO₂), using TEPCO’s published emission factor 𝑔, then the monthly carbon benefit is 𝑝) ∙ 𝑔 ∙

∆𝐶, and the new break-even tariff becomes  

 

𝑝t = 𝑝∗ − 𝑝) ∙ 𝑔. 

 

Using the median break-even price 𝑝∗ = 12.2 JPY/kWh and the Tokyo Stock Exchange carbon credit 

market reported weighted-average traded prices of 2,850 JPY/tCO₂ for energy-saving credits and 4,629 

JPY/tCO₂ for renewable-electricity credits, the break-even tariffs 𝑝t become 

 

𝑝t* = 12.2 − 2850 × 0.000421 = 11.0 JPY/kWh; and 

 

𝑝t+ = 12.2 − 4629 × 0.000421 = 10.25 JPY/kWh, 

 

respectively. That is, although regions may have low-tariffs (𝜋 < 𝑝∗), under current Japanese credit prices, 
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many stores may still benefit from the installation of AI EMS-Enudge. Overall, this implies a clear 

complementarity: higher carbon intensity grids or higher carbon prices lower the required tariff for private 

break-even, thereby increasing the AI EMS adoption, which is also consistent with policy interest in regions 

where coal-fired generation remains prevalent, including many Asian economies.  
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6. Conclusion 

The retail sector, which is characterized by an increasing share of overall electricity consumption and 

complex operational dynamics, presents unique challenges in electricity conservation. EMSs with limited 

features often struggle to adapt effectively to these conditions, requiring advanced management strategies 

such as Enudge, an AI EMS designed to integrate real-time data monitoring, predictive analytics, and 

recommendations. Despite the potential of these systems, empirical studies using econometric methods and 

large sample sizes remain limited. Therefore, there is a critical need to understand how such systems 

contribute to energy reduction in the retail sector.  

We provide empirical evidence of the effectiveness of Enudge in reducing electricity consumption 

in the retail sector. By leveraging store-level data from over 1700 installations in Japan and employing a DiD 

framework, this study shows that Enudge installations lead to an average 1.88% reduction in electricity 

consumption among supermarkets. While empirical evidence in the retail sector remains limited, our results 

are consistent with the literature that primarily focuses on settings in which energy consumption is shaped 

by individual user behavior (Cao et al., 2016; Sardianos et al., 2021). Importantly, we also observe that the 

reduction effect diminishes over time, which aligns with Lee and Cheng (2016) and Tuomela et al. (2021). 

This pattern underscores the difficulty of sustaining long-run savings in supermarkets, where operational 

demands and volatile load profiles may weaken ongoing user engagement. Heterogeneity analyses further 

show that the effectiveness of Enudge varies across different retail sectors and seasonal conditions, 

highlighting the necessity of considering store-specific operational characteristics and external conditions in 

empirical analysis. Moreover, our discussions based on field observations suggest that AI-provided 

recommendations might play an important role in affecting user engagement with energy conservation 

practices. Store visits and manager interviews indicated that these recommendations may serve as frequent 

and continuous reminders, initially encouraging and helping staff adopt energy-saving actions. Although we 

are unable to explore the effectiveness of Enudge’s individual features owing to data restrictions, we can still 

observe the potential of the AI EMS for electricity reduction. 

Our findings have several important policy implications. First, policymakers can incentivize the 

adoption of AI EMS with subsidies, especially in regions with cheaper tariffs. These incentives would lower 

barriers to entry and encourage broader industrial participation. However, the energy savings from an AI 

EMS may be modest. Nevertheless, in the context of climate change policy, promoting AI EMS in the retail 

sector positively impacts the mitigation of CO₂ emissions in regions with high electricity carbon coefficients. 
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In other words, the promotion of AI EMS is most effective in regions where coal is a major source of 

electricity generation. Many Asian countries still rely on coal for power generation and there is a lag in 

mitigating carbon emissions from the retail sector. AI EMSs have the potential to contribute to carbon 

emission mitigation in the retail sectors of these regions. Second, recognizing the decay in energy-saving 

effectiveness over time, policymakers should support initiatives aimed at sustained user engagement such as 

regular training programs and periodic updates. Finally, regulatory measures could be introduced to 

encourage transparency and accountability in EMS implementation, ensuring that stores maintain long-term 

energy conservation practices. 

Overall, this study contributes to the existing literature on AI EMSs in the retail sector by providing 

empirical evidence of Enudge’s reduction potential while also highlighting the challenges of maintaining 

long-term savings. To provide more rigorous academic evaluations, future research could use information 

on users’ interaction tracking and recording capabilities, to understand the behavioral mechanisms behind 

the decay effect and explore strategies that can sustain user engagement. 
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Appendix A. Overview of the AI Energy Management System “Enudge” 

Enudge, developed by i-Grid Solutions, is an energy management support service that combines AI-based 

power demand forecasting with energy-saving expertise, specifically tailored to supermarkets and similar 

retail establishments. By consolidating power usage data across multiple stores and prompting on-site 

energy-saving actions, this system aims to enhance operational efficiency. 

A major feature of Enudge is its platform for confirming energy consumption, environmental 

indicators, and user behavior in real time. As shown in Fig. A1, store managers and employees can access a 

tablet-based interface that visualizes consumption patterns, displays monthly energy usage forecasts, and 

offers energy-saving recommendations. This design includes a “nudge” concept, showing up to three 

recommendations (e.g., adjusting set-point temperatures or switching off specific devices during low-

occupancy hours). Store staffs can respond by tapping “OK” to follow these recommendations. If the 

forecasted demand risk exceeds the contracted load capacity, a higher-priority red alert appears, highlighting 

the need for immediate action. 

 

 
Fig. A1 Enudge’s interface 

 

Enudge not only provides notifications but also time-specific electricity consumption graphs to help 

stores identify peak load periods or compare their performance with previous years (Fig. A2). Many stores 

reported that store managers regularly checked these trends and coordinated staff meetings to plan energy-

saving measures around projected peak times. Since its initial installation, Enudge has gained traction across 
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various retail sectors, such as supermarkets, drugstores, home centers, and pachinko parlors, reaching over 

4,000 installed locations. Reports by Kansai Electric Power indicate that these installations typically achieve 

3–5% energy savings. These results highlight the practical benefits of integrating AI into energy management, 

where timely guidance and actionable insights encourage employees to adopt sustained energy-saving 

practices. 

 

 

Fig. A2 Enudge’s interface 
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